
SACO 2011 FINALS: DAY 1 SOLUTIONS

Finding Squares

(problem and solution by Max Rabkin)

The most important thing to notice here is that the four corners of an
axis-aligned square have the coordinates

(x, y), (x + s, y), (x, y + s) and (x + s, y + s) ,

where (x, y) is the bottom-left corner and s is the side length.

50% solution. This fact allows us to work out if four points form an axis-
aligned square. To determine s we can simply take the difference between
two coordinates. This allows us to find all the axis-aligned squares with four
nested loops over the list of points, by determining whether each 4-tuple of
points forms a square. Care must be taken to avoid counting the same
square multiple times.

Unfortunately, each nested loop over the list of points multiplies the run-
time by N ; this can be reduced a little by avoiding looking at the same
points multiple times, but this is only enough to get 50%.

100% solution. Wee can speed this up by a factor of almost 4 000 000 in
the worst case, by noticing that if we have the coordinates of two corners
of a square, we can work out the coordinates of the other two corners. For
example, if we have (x, y) and (x + s, y), the other two corners must be at
(x, y + s) and (x + s, y + s).

We store the points in a data structure which allows us to quickly de-
termine whether a point is in the set or not (for example, the set type in
Python and C++, Java’s TreeSet, or simply a sorted array with a binary
search). Then we need only loop over every pair of points, and determine
whether the other two corners needed to make a square are in the set.

1



2 SACO 2011 FINALS: DAY 1 SOLUTIONS

Anagram Escape

(problem and solution by Max Rabkin)

30% solution. The most straightforward solution is to loop through all
the length-K substrings of the letter, and determine for each whether it is
an anagram of the key. This can be done by sorting the letters in each
and determining whether they are equal, or by calculating how many times
each character appears in the substring and comparing this to the number of
appearances in the key (an array or list of such counts is called a histogram).

This approach takes N − K + 1 string comparisons of length involving
strings of length K, so in total takes about NK operations. This is fast
enough when N is small.

50% solution. We can improve the approach using histograms by using
the fact that only two entries in the histogram change when we move from
one substring to the next: one character is dropped from the beginning of
the substring, so we decrement its count in the histogram, and another is
added to the end of the substring, so we increment its count.

To determine whether a substring is an anagram of the key, we compare
the entries in the histogram to the pre-calculated histogram of the tree.
This comparison takes time proportional to the size of the alphabet, so the
running time of the whole algorithm is approximately proportional to N
times the size of the alphabet. Therefore, this algorithm will solve 50% of
cases in time.

100% solution. The difference between the full solution and the previous
one is based on the same observation as before: only two entries of the
histogram change at a time when we loop through the substrings of the
letter. Therefore, only these two entries can change from being correct
(matching the count of the corresponding character in the key) to incorrect
or vice versa. Thus, if we keep track of the number of correct entries, we can
update it in constant time per loop iteration; likewise, we can check whether
the substring is an anagram in constant time per loop iteration: when all
the entries are correct, we have found a match.

Language Chains

(problem and solution by Max Rabkin)

The essential problem here is to find the connected components of lan-
guages. Once this is done, we can simply train a single translator in one
language from each component. One thing to be careful of: if none of the
translators speak any languages, it doesn’t matter which is chosen, but if
some translators know languages and others do not, it is important to choose
one who already knows a language (otherwise, one more training than nec-
essary will be required).



SACO 2011 FINALS: DAY 1 SOLUTIONS 3

Although it is probably simplest to train only a single translator, solutions
which use multiple translators are also correct.

50% solution using disjoint sets. There are several solutions which take
roughly quadratic time, and score 50%.

One option is to give each language a number representing the component
it is in. We start by assigning each language its own component, and then
for each translator-language pair, we check if that translator already speaks
a language, and if so, merges the component of that language with the
component of the current language. To merge component number a and
component b, we simply change the component number of every language
in component b to a.

This is slow because every time we merge two components, we must loop
through all the other languages to possibly change their component number.
Even if we keep a list of the languages in a component, so we only loop
through the languages in that component, it will still slow down when the
component grows large.

50% solution using graphs. Another solution is possibly simpler to code,
but requires some basic knowledge of graph theory algorithms. There are
many resources on this subject available free online.

We construct a graph of languages, connecting two languages by an edge
if there is a translator who speaks both of them. One can then use a graph
traversal (e.g., depth-first search) to find the components: if we do not know
which component a language is in, we can do a graph traversal starting from
that language, marking all languages we encounter as being in the same
component.

This algorithm is slow chiefly because of the number of edges it creates: if
there is one translator who knows all the languages, it will create L(L−1)/2
edges; thus in the larger cases, even creating the graph will take too long.

100% solution using graphs. The previous solution can quite easily be
made into a full solution. Instead of connecting every pair of languages
that share a translator, one simply connects every language spoken by a
translator to a single representative language for that translator. This does
not affect the components: it does not matter if two languages are connected
via a third language or directly.

This creates a graph with approximately P edges, and a graph traversal
will find the number of components in time proportional to L + P , which is
certainly fast enough.

100% solution using disjoint sets. The idea of disjoint sets can also
be used to create a full solution, if one creates a specialised data structure
for disjoint sets. For a description of such a structure, see for example
http://en.wikipedia.org/wiki/Union-find.

http://en.wikipedia.org/wiki/Union-find

	Finding Squares
	50% solution
	100% solution

	Anagram Escape
	30% solution
	50% solution
	100% solution

	Language Chains
	50% solution using disjoint sets
	50% solution using graphs
	100% solution using graphs
	100% solution using disjoint sets


