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1 Coaster

This problem can be solved by simulation: create an array with a boolean for
each car, and if somebody can sit in car C, simply loop through all cars from
C to K until an empty car is found.

We can analyze the worst-case performance of this algorithm. If F cars are
already full, we will examine at most F + 1 cars before finding an empty one
(or finding that there is none).

If N ≤ K, the total number of cars examined is at most

1 + 2 + · · ·+ N =
N(N + 1)

2
.

IF N > K, the total is at most

1 + 2 + · · ·+ (K − 1)) + (N −K)K =
K(K − 1)

2
+ (N −K)K

.
In either case, the answer is less than N2, so this algorithm is fast enough.

There are, however, faster algorithms for this problem.

2 Track

2.1 Partial solutions

One solution is to consider every possible pair of a and b, and find the sum of
the track lengths between them, checking whether any of the sums if equal to
the desired length. This takes time proportional to the cube of N , and scores
around 20%.

The problem with this solution is that, for a = 4, we add up the tracks from
1 to 1, then 1 to 2, then 1 to 3, etc. We can do much better by simply adding
another track until the total is equal to the desired length; if it gets larger, we
stop and consider the next a. This avoids recalculating the full total every time
b changes, and takes quadratic time, scoring 40%.

1



2.2 Full solution

To get a full score, we apply a similar change when we move a: instead of
recalculating the totals every time the total gets too large and a is incrememnted,
simply remove track number a from the total and increment it.

In other words, every time the total is too large we increment a and whenever
it is too small we increment b.

Since a takes on each value from 1 to N at most once, and similarly for b,
this algorithm takes linear time, and therefore scores 100%.

3 Haunted

Finding the longest path in a graph is a well known NP-Complete problem. This
means there is no known “quick” solution to it. If you could find a “quick” solu-
tion to it, you would win a million dollars from the Clay Mathematics Institute
for solving the P=NP problem.

Luckily the problem statement only allows for graphs called trees, allow-
ing us to solve the problem “quickly”. Let’s first discuss a sub-optimal solu-
tion. Given a starting room, we can recursively visit every other room using a
technique called Depth-First Search (DFS) http://en.wikipedia.org/wiki/
Depth-first search. We can modify the DFS to record the length of the path
so far when we visit a room. Now for each room we generate every path starting
with it and record the maximum length seen. This should be the answer. The
DFS takes time O(N) and we do it for each room, so we get a total running
time of O(N2).

One of the full solution requires noticing a property of the longest path.
Pick an arbitrary room as the “root” of your tree. Now find the furthest room
from the root by modifying the DFS from the previous paragraph to return the
a furthest found room. Due to the properties of trees, this room must be the
start of a longest path. So use the DFS from the previous paragraph to find the
length of the path starting at this room. The length calculated is the answer.
The runtime complexity of this algorithm is O(N + N) = O(N).

4 PPP

This problem was essentially a generalisation of the binary and linear search
algorithms. When S = 0, the a linear search is an optimal solution and when
T = 0, a binary search is optimal.

4.1 40% Solution

The 40% uses a technique called dynamic programming. Let τ(a, b) be the
maximum time taken to determine which factory is polluting the river if the
factory is in the range a to b. You can determine the following recurence by
considering moving i factories along the river. To move a distance you could
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either need to move to the left or the right so we take the maximum of these
cases.

τ(a, b) = mina−b+1
i=0 ((i + 1)T + max(τ(a + i + 1, b), τ(a, b− i− 1)))

τ(a, a) = 0
τ(a, a + 1) = S + T

The solution can be found to be τ(1, N). This runs in O(N3) time.
In all cases, once the maximum time is obtained then a simple linear pass

can be made in order to determine which factory to probe first. At every factory
ask what time is needed to travel there and then add the maximum of the time
needed to find the factory each of the subsections to the left and to the right
of this point. A probing position which takes a time equal to the calculated
maximum time is valid.

4.2 60% Solution

The 40% can be easily modified to run in O(N2) time by noticing that τ(a, b)
is the same for cases with the same distance between a and b. This is because
no matter how far down the river you are, only the distance you need to travel
affects the maximum time needed.

τ ′(n) = minn−1
i=0 ((i + 1)T + max(τ ′(i + 1), τ ′(n− i− 1)))

τ ′(0) = 0
τ ′(1) = S + T

The solution can is then τ(N).

4.3 Linear-time Solution

The above situation can be simplified to yeild a faster solution. Firstly, notice
that i only needs to go up to dn

2 e − 1 and the maximum can be eliminated.

τ ′(n) = mind
n
2 e−1

i=0 ((i + 1)T + τ ′(n− i− 1))
τ ′(n) = minn−1

i=bn
2 c

((n− i)T + τ ′(i))

τ ′(n) = nT + minn−1
i=bn

2 c
(τ ′(i)− iT )

A sliding window can now be used to calculate the minimum efficiently. The
values of τ ′(i) − iT are added to an appropriate data structure once τ ′(i) is
calculated the mimimum is queried as needed. Once the values in the data
structure get too old they need to be removed. If a priority queue is used to
query the minimum an O(N log N) algorithm is obtained. Some clever use of a
deque can reduce this to O(N) time. Both of these score 100%.

4.4 Logarithmic-time Solution

There is an even faster solution which is not required to get 100% on this
problem. By examining the linear time solution it can be seen that T (N − 1)
time is taken travelling in all cases. In can further be shown that exactly dlog2Ne
probes are needed in the worst case. This means that the total time is simply
T (N − 1) + Sdlog2Ne.
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The first factory to probe can be found as above or by noticing that choosing
the middle factory always yields optimal results.
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