
SACO 2009 Day 2 Solutions

SACO Scientific Committee

1 Counting Truths

The most important observation to make is that if guard i is telling the truth
and Ki ≥ Kj then guard j must also be telling the truth (if at least Ki guards
are telling the truth, then at least Kj guards must also be). So the set of guards
always consists of the first M guards (after sorting the Ki sequence), for some
M .

If exactly M guards are telling the truth, then Ki ≤ M for 1 ≤ i ≤ M –
the first M guards are truthful – and Kj > M for M < j ≤ N – the remaining
guards are lying. Since the guards are sorted, it suffices to check that KM ≤ M
and KM+1 > M . So we simply run through all M ∈ 1, . . . , N to find the
smallest one that satisfies these two conditions.

This search runs in linear time; the overall time depends on the sorting
algorithm used. An O(N log N) sort like the one built into Python is sufficient
to get a full score, but it is possible to use a counting sort to get O(N) overall.

2 As Cunning As A Fox

A straight bruteforce of this problem should give you 50%, assuming you brute-
force each cage, and then crudely sum (O(N3)) all the cages.

To get slightly better marks, your initial observation you should be the
symmetrical pattens of the cube, such that any cage can be decomposed into
the sum of it’s components. This allows one to only store a 1-d array of the
cube, and derive all values [in constant time] for queries.

The generation of the cube can be done either with a BFS1, or using Dynamic
Programming with the following recurrence relation:

grid[x] =

{
1 if x is a power of two
1 + min(grid[x− 2k],grid[2k+1 − x]) otherwise

where k = blog2(x)c.
We now have generated the entire array in linear time, but this is pointless

if we naively sum the cube. Luckily for us, the summation of the grid can be
sped up by using the following formula:

1http://en.wikipedia.org/wiki/Breadth-first search

1



Total = 3×N2 × sum(grid)

3 Travelling Fred

Travelling Fred is a problem in graph theory. The first step (and the one which
dominates most of the time) is finding the shortest distance between the T cities
you have to travel between. You then follows this with brute force solution of
every path visiting the T cities.

Say we already know the shortest distance from city a to b, and it is dist(a, b)
(this can equal “infinity” if there is not a path). We then want to find the
shortest distance that starts and ends at city 0, but also visits cities 1, 2, . . . , T−
1. So we create a list path = [1, 2, . . . , T − 1] and for each permutation you
calculate

dpath perm = dist(0, path[0]) + dist(path[0], path[1]) + dist(path[1], path[2])
+ · · ·+ dist(path[T − 3], path[T − 2]) + dist(path[T − 2], 0)

The answer is then the smallest dpath perm. This takes O(T !) time.
To calculate dist(a, b) we can do Floyd-Warshall2 which takes O(C3) time.

However this will only score 80%, since we end up calculating the distance
between all C cities, instead of just the first T cities. Instead we do a Breadth-
First Search (BFS)3 starting at each city which we must travel to. This takes
O(CT ) time. In total the algorithm takes O(CT + T !) and will score 100%

2http://en.wikipedia.org/wiki/Floyd-Warshall algorithm
3http://en.wikipedia.org/wiki/Breadth-first search

2


