
South African Computer Olympiad
Third Round 2009

Day 1

Overview

Problem pieces guardian stacker

Source pieces.java
pieces.py
pieces.c

pieces.cpp

N/A stacker.java
stacker.py
stacker.c

stacker.cpp

Input file stdin guardian.in stdin

Output file stdout guardian.out stdout

Time limit 0.2 seconds N/A 0.2 seconds

Memory limit 128MiB N/A 128MiB

Number of tests 10 10 10

Points per test 10 10 10

Detailed feedback No No Yes

Total points 100 100 100

The maximum total score is 300 points.

http://olympiad.cs.uct.ac.za/contest.html

Sat 26 Sep 2009



South African Computer Olympiad
Third Round 2009

Day 1

Artefact Pieces
Harry Wiggins, Bertus Labuschagne and Max Rabkin

Introduction

You are an avid relic hunter and have recently uncovered
a mystical map leading to an ancient artefact, which is di-
vided into two separate pieces. The two pieces are buried
at different locations along a straight road, which runs
for ten kilometres from west to east. The pieces of the
artefact are located at the unknown positions A and B,
measured in centimetres along the road from the western
end.

You have a metal detector which will help you find the
pieces, but it is not very powerful. It can only be turned
on 50 times before the battery runs out. Each time it is
switched on it will only tell you whether it is between the
two pieces, to the west of both pieces, or to the east of
both pieces; it then immediately turns off again. If the
metal detector is exactly above one of the pieces, it will
report that it is between the two.

Thankfully, each piece of the artefact is buried with the
exact location of the other piece. So you only need to
locate one of the pieces.

Task

Write a program that locates one of the artefact pieces
with no more than 50 uses of the metal detector. The
metal detector can only be used at whole-numbered posi-
tions (in centimetres).

Example

Your program probes at positions 0, 1, 2, 3 and 4. The
metal detector reports “west”, “between”, “between”,
“between” and “east”, respectively. Then the pieces are
positions 1 and 3 and your program can report either of
them.

Interaction

To probe at a position p (0 ≤ p ≤ 1 000 000 — a probe
out of range may cause catastrophic failure, resulting in
undefined behaviour!), your program must output “P p”
followed by a newline, and then flush the output stream.
It can then read in a single line containing a single char-
acter: “W” if the probe is to the west of the two pieces,
“E” if it is to the east and “B” if it is between. If you

Output Input
P 0

W
P 1

B
P 2

B
P 3

B
P 4

E
F 3

Figure 1: Example interaction

attempt to probe more than 50 times, the metal detector
your program will be terminated and score zero.

When it has found one of the pieces at position f , your
program must output “F f” followed by a newline, flush
the output stream, and exit.

To flush the output stream in Python, import the mod-
ule sys and then call sys.stdout.flush(). In Java, call
System.out.flush().

Constraints

• 0 ≤ A < B ≤ 1 000 000

Additionally, in 40% of cases:

• A ≤ 49

Time limit

0.2 seconds. Python multiplier: 10.

Testing

To test your program, you can provide a test file to the
online testing facility in the following format: a single line
containing two space-separated integers, A and B satisfy-
ing the above constraints.

Scoring

If your program interacts correctly, uses no more than 50
probes, and finds one of the pieces of the artefact, you will
score 100% for that run. Otherwise you will score 0%.

Sat 26 Sep 2009



South African Computer Olympiad
Third Round 2009

Day 1

Guardian Knights
Max Rabkin, Robert Ketteringham and Michiel Baird

Introduction

In the middle of the night, several UFOs landed in
Fredville. Although they do not seem to be dangerous,
the townspeople have decided to hire some knights to keep
watch over them just in case.

They want to position the knights so that they can at-
tack any one of the UFOs in a single move should the need
arise. A knight moves by taking two steps in one direction
followed by one at right angles. They cannot move any
other way, but can jump over UFOs and other knights. A
knight can guard several UFOs at once, as long as they
are all a single move away.

The townspeople are not wealthy, so they want your
help in placing the knights so that they can hire as few
knights as possible.

Task

Given the positions of all the UFOs, place as few knights
as possible, ensuring that each UFO is a single move away
from at least one knight.

A knight cannot be placed at the same position as a UFO
or another knight.

Example

If the UFOs are at (1, 1), (3, 1), (1, 4) and (4, 2), they can
be guarded by knights at (2, 3) and (3, 3). In the figure,
the y coordinates are shown increasing downward.

Input (guardian.in)

The first line of input contains a single positive integer,
N , the number of UFOs. The next N lines each contain
two integers, xu and yu, the coordinates of the UFOs.

Sample input

4
1 1
3 1
1 4
4 2

Output (guardian.out)

The first line of output should contain a single posi-
tive integer, K (K ≤ N): the number of knights. The
next K lines should each contain two integers, xk and yk

(−1 000 000 010 ≤ xk, yk ≤ 1 000 000 010): the coordinates
of the knights.

Sample output

2
2 3
3 3

Constraints

• −1 000 000 000 ≤ xu, yu ≤ 1 000 000 000

• 1 ≤ N ≤ 10 000

It is guaranteed to be possible to guard every UFO.

Submission

Each submitted output file will be checked to ensure the
file is formatted correctly and that each UFO is guarded
by at least one knight.

Scoring

Invalid submissions will score 0.
Valid submissions for each case will be compared to the

best submission for that case by any contestant. If your
submission is the best you will score 10. Otherwise, if the
best submission uses B knights, then your submission will
score b 9B

K c.

Sat 26 Sep 2009



South African Computer Olympiad
Third Round 2009

Day 1

Stacker
Keegan Carruthers-Smith

Introduction

Stacker is a two player game. There is a shared stack of
N numbers and each player takes it in turns to remove
between 1 and M values (inclusive) from the top of the
stack. A player’s score is the sum of every value they
remove from the stack.

The game is over when every value has been removed
from the stack. The objective of the game is to maximise
your score.

Task

The opposing player plays such that his final score is as
large as possible. Assuming you start and both players
play perfectly (they can plan ahead through the whole
game, and never play sub-optimally), find the maximum
score you can get in a game of Stacker.

Example

In the sample input you can remove 1, 2 or 3 values per
turn and your stack initially looks like this:

5 2 0 1 4 3 5 2 0 0

At each turn you remove values from the right. The best
you can score is 12, causing the opponent to score 10. This
is done by:

Player Removed Stack Score
5 2 0 1 4 3 5 2 0 0 0 - 0

You 0 5 2 0 1 4 3 5 2 0 0 - 0
Opponent 0, 2, 5 5 2 0 1 4 3 0 - 7
You 3, 4 5 2 0 1 7 - 7
Opponent 1, 0, 2 5 7 - 10
You 5 12 - 10

Input (stdin)

The first line of the input contains two space-separated
integers: N and M . The next N lines each contain a
single integer, xi. These are the values on the stack at the
start of the game. The first value is at the bottom of the
stack (so will be removed last). The last value is at the
top of the stack (so will be removed first).

Sample input

10 3
5
2
0
1
4
3
5
2
0
0

Output (stdout)

The output contains a single integer T . T is the largest
value you can score assuming the opposing player max-
imises his score.

Sample output

12

Constraints

• 1 ≤ N ≤ 220 000 = 22× 104

• 1 ≤ M ≤ N

• 0 ≤ xi ≤ 5 000

Additionally, in 50% of the test cases:

• 1 ≤ N ≤ 5 000 = 5× 103

• 1 ≤ M ≤ 100

Additionally, in 30% of the test cases:

• 1 ≤ N ≤ 10

• 1 ≤ M ≤ 5

Time limit

0.2 seconds. Python multiplier: 10. Java multiplier: 3.

Detailed feedback

Detailed feedback is enabled for this problem.

Scoring

A correct solution will score 100% while an incorrect so-
lution will score 0%.

Sat 26 Sep 2009


