

(search)

The problem

Given a grid of letters and a list of words:
 Find the words in the grid (either vertically,

horizontally or diagonally)
Call all the places where we find words placements

 Choose the subset of these placements such that:
No two placements overlap
The score of the subset of placements is as large as

possible
 Score is equal to the number of placements + the length of

all the placements

Example

OVCME

MLRPP

ALLLI

ERWEU

MFKHH• HELLO
• ME
• ALL
• I
• HELP
• WE

The greedy approach

The scoring formula
favoured longer
placements
 Use the longest legal

placement, and
repeat until there are
no more legal
placements

OVCME

MLRPP

ALLLI

ERWEU

MFKHH

OVCME

MLRPP

ALLLI

ERWEU

MFKHH

I have a cunning plan…

Turn the set of placements into a graph
 Create a node for each placement
 Create an edge between nodes if their

placements overlap

Converting to a graph

OVCME

MLRPP

ALLLI

ERWEU

MFKHH

HELLO (6)

HELP (5)

ME (3)ME (3)

ALL (4)

I (2)

WE (3)

Using the graph

Use every node that is not connected to
anything else
 These nodes correspond to placements that do

not overlap with any other placements
We get them for free! :-)

For the remaining nodes, split them up into
what are called connected components
 Each connected component corresponds to a

smaller sub-problem

Solving within each connected
component

 Imagine that we highlight nodes in the graph to indicate that we
wish to use those nodes’ placements

 Our goal is then to highlight a subset of highlighted nodes such
that:
 No two highlighted nodes have an edge connecting them
 The total score of the highlighted nodes is as large as

possible
 If each node had a score of 1, then this is known as the

maximum independent set problem (which is NP-complete)

HELLO (6)

HELP (5)
ALL (4)

WE (3)

HELLO (6)

ALL (4)
HELP (5)

Solving within each connected
component (2)
Brute force

 Give your placements some order
 For the first placement, you try two options:

either you use the placement, or you don’t
For the second placement:

 If it conflicts with the first one (their nodes are
connected by an edge), then you can’t use it —
move onto the third placement

 No conflict, so again you have two options: use it or
lose it! Try each, and then…

For the third placement…

Carl’s quick intro to recursion

 Typing out all those different options is going to take a long
time. There must be an easier way…

Function solve(n)

if can_use(n)
use(n)
solve(n+1)

don’t_use(n)
solve(n+1)

if n = end
calculate_score()
if score > best_score

update_best_score()
return

Some other thoughts

Look for chains
 E.g. A connected to B connected to C connected

to D connected to…
 These can be solved using dynamic programming

(DP)
Look for loops

 These can be dealt with in a similar way to chains,
using DP

Look for trees
 Trees allow you to break up the problem into

smaller problems, by considering each branch
individually

Or just do it by hand ;-)

Questions, comments, death threats,
large sums of money? ;-P

