
SACO 2007 Day 2 Solutions

1 Factorise

The easiest way to solve this problem comes from noticing that the constraints
are low enough to test every value less than N to see if it is a factor of N . So,
loop from i = 2 to i = N . If i has no remainder when it is divided into N , then
it is clearly a factor of N . The remainder when N is divided by i is written as
N mod i. If i is a factor of N , keep dividing N by i until it is no longer a factor.
Keep track of the number of times you do this. When you can no longer divide
N by i, output i and the number of times it divides into N . Then increment
i and repeat. Notice that since you are increasing i, the factors will always be
output in sorted order.

1.1 Example

As an example, take N = 45. Notice that N = 9× 5 = 3× 3× 5.

• Start with i = 2. Then, N mod i = 45 mod 2 = 1, so 2 does not divide into
45.

• Next move on to i = 3. Since 45 mod 3 = 0, 3 is a factor. Next divide 45
by 3 to get 15. 15 mod 3 = 0, so 3 divides 15. Again, divide 15 by 3 to
give 5. Clearly, 3 does not divide into 5, so we are done with 3. Output
that 3 divides into 45 a total of 2 times.

• Moving on to i = 4, we can see that 4 does not divide into 5.

• Finally, i = 5. Since 5 is a factor of 5, we output that 5 divides into N
once.

1



1.2 Pseudo-code

i = 2

while N != 1:
num_of_divides = 0

while N % i == 0:
N = N/i
num_of_divides = num_of_divides+1

if num_of_divides > 0:
fout.write(’%d %d\n’ % (i, num_of_divides))

i = i + 1

2 French Taunter

Using a brute force algorithm, whereby for each of the W words you attempt to
match it in the array using indexOf(),in, find() or other similar methods of
physical matching would work fine for small values of N and M , however as N
and M tend to their upper constraints, the amount of possibilities of placings for
words increases very rapidly, making the running time of a brute force solution
increase beyond the allowed running time.

The more efficient solution, and the intended solution, is to implement an
efficient data structure such as a trie, hashtable or dictionary. (A sorted array
with a binary look-up should work fine in Pascal where a hashtable or dictionary
does not exist). This allows you to preprocess either the possible W words, or as
the model solution does, all possible words in the grid, into a structure whereby
you can search for them quickly, based rather on the length of the word searching
for, as opposed to the number of words that exist is the list.

3 Living Dead Parrot

The key observation in parrots is that if you know there are A1 alive parrots in
the range [a, b] and there are A2 alive parrots in the range [a, c] (where c < b)
then there are A1 −A2 alive parrots in the range [c + 1, b].

Using this fact, you can use a divide and conquer approach to solving the
problem. This approach is very similar to the binary search which you may
have learned in computer science.

2



3.1 Psuedo-code

alive_parrots = boolean array of size N
set each value in alive_parrots to false

function search(a, b, num_alive):
if (num_alive == 0)

return
if (b - a + 1 == num_alive)

set alive_parrots to true in range [a,b]

c = (a+b)/2
q = query(a,c)

search(a, c, q)
search(c+1, b, num_alive - q)

search(1, N, query(1,N))

4 How Not To Be Seen

A brute-force solution would generate all possible placements of the spies and
check which of them satisfy the required conditions. This solution should get
50%.

To get 100%, however, you have to use a technique known as Dynamic Pro-
gramming. The idea is to break the large problem into many smaller problems
that we can easily solve and then combine the smaller solutions to get the solu-
tion to the large problem.

Start by defining An,m,k as the number of placements of k spies in an n×m
garden. The placements can be described by the following four possibilities:

• There are An−1,m,k placements with no spies in row n.

• There are mAn−1,m−1,k−1 placements with one spy in row n that is not
in the sight of any other spies. No other spies can be placed in row n or
in the column of this spy. There are m possible places to put the spy on
row n.

• There are m(m−1)
2 An−1,m−2,k−2 placements with two spies in row n. No

other spies can be placed in row n or in the columns of these two spies.
There are m possible placements for the first spy and m−1 for the second
spy. To adjust for spies taking the same positions, but just swapping
positions, we halve this number.

• There are m(n− 1)An−2,m−1,k−2 placements with one spy which is in the
sight of another spy in another row. No other spies can be placed in row
n or in the column of this spy. There are m possible paces to put the spy
on row n and n− 1 possible places of the spy in sight.

3



Combining these four possibilities we get the formula:

An,m,k = An−1,m,k +
mAn−1,m−1,k−1 +

m(m−1)
2 An−1,m−2,k−2 +

m(n− 1)An−1,m−2,k−2 (1)

We know that A0,m,k = An,0,k = 0 and An,0,0 = A0,m,0 = An,m,0 = 1 for
all n, m, k. Consider the nth row of the garden. Using these as the base cases
we can iterate through the n, m, k in increasing order calculating all the values
An,m,k and the answer will be AN,M,K .

4.1 Pseudo-code

All values An,m,k with any of n, m, k out of bounds are 0.

Set base cases as outlined above
for n in 1..N

for m in 1..M
for k in 1..K

A[n][m][k] = <insert formula 1 here>

5 The Crimson Permanent Assurance

See presentation.

4


