
South African Computer Olympiad
Final Round

Day 2

Overview

Author Migael
Strydom

Charles
Bradshaw and

Ben
Steenhuisen

Keegan
Carruthers-

Smith

Problem factor taunter parrots

Source factor.java
factor.py
factor.c

factor.cpp
factor.pas

taunter.java
taunter.py
taunter.c

taunter.cpp
taunter.pas

parrots.java
parrots.py
parrots.c

parrots.cpp
parrots.pas

Input file factor.in taunter.in stdin

Output file factor.out taunter.out stdout

Time limit 1 second 1 second 1 second

Number of tests 10 10 10

Points per test 10 10 10

Total points 100 100 100

The maximum total score is 300 points.

http://olympiad.cs.uct.ac.za/contest.html

Sun 16 Sep 2007

South African Computer Olympiad
Final Round

Day 2

Factorise

Author

Migael Strydom

Introduction

You are at the argument clinic having an argument about
prime numbers. The dispute is about a particular number,
which you are told is a prime number. You are not so
sure, however, and want to write a program that factorises
numbers into their prime factors so that you can win this
debate.

Task

You will be given an integer N that needs to be factorised
into its prime factors. Recall that a prime number is a
number that is divisible only by 1 and itself, and a factor
of N is a number that perfectly divides into N . 1 is not a
prime number.

In some cases a certain prime factor divides into N more
than once. Your program will also have to output the
number of times each prime factor divides into N .

If the given integer N is prime, then it has only one
prime factor, which is N itself.

Example

Take, for example, the number 12. It can be written as
12 = 2×2×3. 2 and 3 are both prime numbers. Note that
the prime factor 2 appears twice, and the prime factor 3
appears once.

Therefore, when given the number 12, the correct an-
swer is that the prime factors are 2, which appears twice,
and 3, which appears once.

Input (factor.in)

The input is a single line containing an integer, N .

Sample input

12

Output (factor.out)

The output should consist of P lines, where P is the num-
ber of distinct prime factors of N . Each line should con-
tain two space-separated integers, fi and mi, where fi is
a prime factor, and mi is the number of times fi divides
N .

The output should be sorted in ascending order by the
fi.

Sample output

2 2
3 1

Constraints

2 ≤ N ≤ 100000

Time limit

1 second.

Scoring

A correct solution will score 100%, while an incorrect so-
lution will score 0%.

Sun 16 Sep 2007

South African Computer Olympiad
Final Round

Day 2

French Taunter

Author

Charles Bradshaw and Ben Steenhuisen

Introduction

The French Taunter has too many taunts to use, and has
therefore decided (using his vast deductive capabilities) to
hide all his favourite words in a rectangular grid of seem-
ingly random letters. To distinguish between the nouns
and the adjectives, the Taunter put all nouns horizontally
in the grid, and all adjectives vertically. Due to the ver-
satility in the Taunter’s interpretation of the English lan-
guage, some of his words are both adjectives and nouns,
and hence are stored both vertically and horizontally. The
cunning Taunter decided that some words are especially
effective, and so wrote them backwards in the grid.

However, the Taunter has since developed a new list
of words he wants to use (he has developed the list over
a long period of time, and so there may be words that
appear multiple times on the list). Before he adds them
to the array, he needs to find out if each word has been
inserted already. Never one to admit to the foolishness of
his own data structures, he has asked you to search for
words in his list that are already in the grid.

Task

Given an N×M array of upper-case letters and W upper-
case words, you must detect which of the W words are in
the grid horizontally (forwards and/or backwards), verti-
cally (up and/or down), both (horizontally and vertically)
or neither.

Example

Given the grid in Figure 1 and the list of words to search
for in Table 1:

T H G I N

S O A R I

D F F O U

S T O N E

K

S

R

H

Figure 1: An example grid

NI
IRON

KNIGHT
HAMSTER
STONES

Table 1: The list of words to search for in Figure 1

• NI appears in the 5th column downwards, and in the
first row backwards, so it is both horizontal and ver-
tical.

• IRON appears in the 4th column downwards, so it is
only vertical.

• KNIGHT appears in the first row backwards, so is only
horizontal.

• HAMSTER does not appear, so it is neither.

• STONES appears in the last row, so it is only horizon-
tal.

Input (taunter.in)

The first line contains three space-separated integers N ,
M and W . The next N lines each contain M upper-case
letters which describe the grid. The next W lines each
contain a single string of upper-case letters, the words to
be searched for in the grid.

Sample input

4 6 5
THGINK
SOARIH
DFFOUR
STONES
NI
IRON
KNIGHT
HAMSTER
STONES

Output (taunter.out)

The output must be W lines describing the presence of
the words in the grid. The ith line should contain:

• HORIZONTAL if the ith word appears only horizontally
in the grid

• VERTICAL if it appears only vertically in the grid

Sun 16 Sep 2007

South African Computer Olympiad
Final Round

Day 2

• BOTH if it appears both horizontally and vertically in
the grid, or

• NEITHER if the word does not appear at all in the grid

Sample output

BOTH
VERTICAL
HORIZONTAL
NEITHER
HORIZONTAL

Constraints

• 1 ≤ N,M ≤ 50

• 1 ≤ W ≤ 40000

• length(wordi) ≤ min(N,M)

Additionally, in 50% of the test-cases:

• 1 ≤ N,M ≤ 15

• 1 ≤ W ≤ 10000

Time limit

1 second.

Scoring

If you get the solution correct for all the words you will
score 100%. If you output that a word could be found
either vertically or horizontally in the grid (or both) and
this is actually not possible, then you will score 0%. Oth-
erwise, if you get the correct answer for K of the W words,
you will score 50× K

W % rounded down.

Sun 16 Sep 2007

South African Computer Olympiad
Final Round

Day 2

Living Dead Parrot

Author

Keegan Carruthers-Smith

Introduction

The Pet Shop Owner has a lot of cages with parrots in
them at the back of his store. The owner needs to find
out which cages have parrots that are alive, but the door
to the back of his store is locked. The cages are lined up in
the back and each cage is attached to a rope. Each rope
goes through a pulley system to the front of the store.
Pulling these ropes from the front of the store causes the
cages to rattle in the back. A parrot will squawk if its
cage is rattled.

The pulley system causes a range of cages that are adja-
cent to each other to rattle. The Pet Shop Owner has been
using this pulley system for many years and has learned
how to pull the ropes such that he can rattle any range of
cages he wants.

Task

You must work out which cages have parrots that are
alive in them. The owner can work out how many live
parrots are in the range a to b by listening to the number
of squawks. The owner’s time is limited, so he can only
pull on the pulley up to M times. The cages are numbered
from 1 to N . There are K live parrots.

Input/Output

You must read input from standard input (as you would
normally read input from the keyboard). You should be-
gin by reading in a line containing the space-separated
integers N and M , the number of cages and the number
of pulls the shop owner can make respectively.

From here you have 2 possible responses, which you
write to standard output (as you would normally write to
the console):

• Range Query: Q a b

• Answer: A S

The range query will return the number of parrots that
are alive in the range a to b, including a and b.

You must remember to flush the output stream after
every query, to ensure that the evaluator receives it.

• Pascal: flush(output);

• C stdio: fflush(stdout);

• C++ iostreams: cout << flush;

• Java: System.out.flush();

• Python: sys.stdout.flush()

Requires ‘import sys’

The answer, S, is a space-separated sequence of 0’s and
1’s representing whether the parrot in each cage is alive
(1) or dead(0).

You can only make up to M range queries, and give one
answer. After you have given an answer your program
must terminate without producing further output.

Example

For the sake of clarity in this example, we shall ignore the
constraints on the number of parrots that are alive, K, as
well as the number of questions allowed, M .

See Table 2 for an example of the interaction with the
evaluator when N = 20 and M = 10.

Input Output
20 10

Q 5 10
0

Q 11 20
2

Q 17 19
2

Q 18 19
2

Q 1 5
1

Q 3 3
1

A 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Table 2: Sample interaction. N = 20, M = 10 and cages
3, 18 and 19 contain alive parrots.

Testing

During the contest, you may wish to test your program
using some set of dead and living parrots. The format of
the file that you should upload to the server to test your
program with is as follows. The first line should contain
a single integer N , the number of cages. The next line
should contain N space-separated integers, each of which

Sun 16 Sep 2007

South African Computer Olympiad
Final Round

Day 2

is either 0 or 1 to indicate whether the parrot is dead or
alive respectively.

Please take note of the constraint below on K, the num-
ber of live parrots — if your test-case has no live parrots
or too many live parrots, then the test will fail.

Constraints

• 100 ≤ N ≤ 100000 = 105

• M = dlog2(N)× N
100e

• 1 ≤ K ≤ N
100

Note that dxe is the smallest integer greater than or
equal to x.

Time limit

1 second.

Scoring

If you ask more than M range queries or output a parrot as
alive when it is dead you will receive 0% for the test case.
You will also receive 0% if you make any range query that
does not satisfy 1 ≤ a ≤ b ≤ N , if any of your outputs are
formatting incorrectly (e.g., outputting values other than
0’s and 1’s in S).

You will receive 100% for a test case if you guess the
positions of all parrots correctly.

Otherwise, if you correctly identify the positions of D
live parrots, you will get 60× D

K %.

Sun 16 Sep 2007

