
SACO 2007 Day 1 Solutions

1 Protecting The Castle Aaaaaagggh

There is only one solution to this problem and that is to simulate the delivery of
the cannons by selecting where to place them as they come in, keeping running
totals of the total number of cannons at each defence point. At the end of the
simulation, determine the minimum and maximum number of cannons and the
answer is their difference.

2 Round Garden

We know that Si ≤ Ci. A brute-force solution therefore generates all possible
Si values. Each combination is checked by calculating what the Ci values would
be given these Si and compares them to those given. Once a match is found we
know that must be the answer. This should get 50%, but as soon as N increases
this solution will be very slow.

All arithmetic on i that follows is done modulo N , e.g. Ci refers to Ci mod N .
Ci+1 − Ci = Si+M+1 − Si. Let δi = Si+1 − Si. We then iteratively calculate
αi+M = αi+δi by first setting α1 = 0. Given the α values, we can then calculate

S1 =
Ci−

∑M

i=1
αi

M . From here we can calculate all values Si = S1 + αi.

3 Longest Prefix

A brute-force solution finds the longest prefix shared between Wi and Wj for
all i, j and then chooses the longest as the answer. Notice that if you add the
restriction i < j then you will still compare all words while halving the number
of checks. This solution will get you 50%.

There are several solutions which will get you 100%. Probably the easiest
of these involves first sorting the list of words. You then only have to compare
successive words, Wi and Wi+1. Another solution is to generate all possible
prefixes of a word and store them in a hash table (dictionary in Python or
HashMap in Java). Before adding a prefix you check to see if it’s already in the
hash table and if it is compare it to the current longest common prefix found.

1



4 The Knights Who Say Ni

The x, y-coordinates in the 50% constraints are small enough to generate a full
grid of the minimum number of moves required to get from any point to (0, 0).
The grid can be generated by a breadth-first search (BFS).

We know that getting to (0, 0) requires 0 moves. We therefore know that
the points (1, 2), (2, 1) and the other six movements each require 1 move. From
each of those points with a shortest distance of 1, we can take another step in
each direction for a shortest path of 2. However, some moves will bring us back
to a point we have already found a shorter distance for and we therefore discard
such moves. We continue this until the grid is full and then use the grid to find
the distances for each knight.

To get 100%, a lot of scribbling on paper is required to make some key
observations and work out some formulae. The first thing to note is that the
grid is symetrical along the x, y axis and the lines y = ±x. You can therefore
convert all points (x, y) into an equivalent point such that the new 0 ≤ y ≤ x.

The magic formula is:

f(x, y) =
{

2by−δ
3 c+ δ if y > δ

δ − 2b δ−y
4 c otherwise

where δ = x− y.

5 Trojan Badger

We use a breadth-first search to find the distance between the starting state
and ending state. For each position there are three different possible states:
standing upright, lying northwards, or lying eastwards (which we will denote U ,
N and E respectively). So are states look like this: (x, y,U). For N , we will
record the southernmost of the two points, and for E , the westernmost.

5.1 Neighbouring states

Now we need a way to calculate neighbouring states from a given state (i.e. the
states that you can get to in one move from the given state). A bit of scribbling
shows us that:

• The neighbours of state (x, y,U) are (x, y+1,N ), (x, y−2,N ), (x+1, y, E),
and (x− 2, y, E).

• The neighbours of state (x, y,N ) are (x + 1, y,N ) and (x − 1, y,N ) (by
rolling), and (x, y − 1,U) and (x, y + 2,U) (by standing up).

• The neighbours of state (x, y, E) are analogous to those of (x, y,N ): they
are (y+1, x, E) and (y−1, x, E) (by rolling), and (x−1, y,U) and (x+2, y,U)
(by standing up).

2



5.2 Breadth-first search

Breadth-first search is an algorithm for finding the shortest path between two
states if the distance between any two neighbouring states is the same (in this
problem, to get from one state to a neighbouring always takes one move).

Let the starting position be (xS , yS), and the ending position be (xF , yF ).
Then the start state is (xS , yS ,U) and the end state is (xF , yF ,U).

1. Create a queue.

2. Add the start state to the queue; mark it as visited, and record its distance
as zero.

3. If the queue is empty, there is no path from the start to the end state, so
exit.

4. Remove a state from the front of the queue.

• If it is the end state, the length of the path is the distance you
recorded, so exit.

• Otherwise, for each valid unvisited neighbour (i.e. neighbours which
are not on obstacles or standing on a trap), mark it visited, and
record its distance as the distance of the current state plus 1.

5. Go to step 3.

3


