SACO 2006 Day 1 solutions

Bruce Merry

Four Yorkshiremen

Suppose a number n > 1 is not prime. Then it has a factor a, and so n can be written as n = ab.
If a > /n and b > y/n then ab > n, a contradiction. Thus any non-prime has a factor which is at
most its square root. Checking whether a number is prime is thus as easy as checking all possible
factors up to the square root.

Checking if a number is a palindrome is most easily done by converting the number to a string
(using the features of your language of choice) and checking if it is symmetrical. To count the
prime palindromes less than NV, it suffices to test each number in the range.

Joke

The first simplification that can be made is to solve a slightly easier problem. Let f(K,c) be the
number of letter ¢’s in the first K characters of the ciphertext. Then the frequencies that should
be output are f(B,c) — f(A—1,¢).

Consider the case when N = 1 (one encryption). Applying one level of encryption to “badbeef”
gives “aaldc|alaalealealf”, where the bars separate the groups generated from each letter. If we
want to count the frequencies in the first 6 characters, we will have the first three groups, plus
part of the fourth group. Since the strings in the first three groups are known in advance (they
are from the substitution table), we can compute frequency tables for them in advance. The
frequency counting then just involves adding together these tables, and adding on counts for any
partial group.

To solve the problem completely, it is sufficient to apply this principle recursively. In advance,
we compute the length and frequency table that results from encrypting each letter each possible
number of times (up to N). To count the frequencies in a range, we start with the biggest blocks,
namely those that come from encrypting the letters of the plain-text N times. For one of these
we may have a partial block, in which case we need, say, K; letters from that block. If that
block was generated from a letter ‘a’, we then apply one level of encryption to expand the ‘a’ to
a once-encrypted string, and apply the algorithm recursively to compute counts for the first K,
characters of the N — 1-times encryption of this string.

Mouse

Finding a way to link a bunch of things into a single ring using only prescribed connections is
known as the Hamiltonian cycle problem, and in the general case there are no known efficient
solutions (technically, the problem is NP-complete). However, the constraint that every mouse is
a stranger to more than half the other mice makes the problem easier to solve.

One can start by putting one mouse into a line, then finding a stranger to it, then a stranger
to that one and so on, just building up the line one mouse at a time. However, at some point one
might find that the mouse just added knows all the mice that are not yet in the line. In this case,
it is necessary to go back and modify the line. One way to do this is to take a tail-section of the
line and reverse it (e.g., replace 1 23456 with 1236 5 4).



Let the mouse just added to the line be Mr. A, one of the mice not yet in the line be Mr. B,
and the number of mice currently in the line be k. There are k possible reversals (including just
reversing Mr. A, which has no effect). Mr. A knows all N — k mice not in the line, so he knows at
most k—1— % of the mice in the line. This rules out kK —1 — % of the possible reversals, since he
cannot end up next to a mouse he knows. We also want to be able to append Mr. B to the line,
which rules out up to % — 1 of the reversals, leaving at least 2. We can thus always add other
mouse to the line.

Once all the mice are in a line, we may not be able to connect it into a circle. If this is the
case, we do another reversal. We want the first mouse to stay in place, so we rule out reversing
the entire range and only consider N — 1 reversals. Of these, up to % — 1 may be illegal because
they would put the last mouse next to a friend, and another & —

2
friend of the first mouse to the end. This leaves one viable reversal.

1 because they would move a

Wooden

You are given some information about the shape of the roof, and any efficient solution must exploit
this information. There are two key optimisations that can be made with the information:

1. To determine whether an animal fits in a particular place, it is only necessary to check
whether the left or right end is too tall. If both sides fit, then the roof cannot dip in the
centre.

2. Shorter animals should be packed towards the ends, with taller animals towards the middle.

A basic algorithm (that can score up to 60%) starts by sorting the animals by height. It then goes
through the animals from shortest to tallest, and for each animal decides to either discard it, to
pack it as far left as possible, or to pack it as far right as possible. Since there is a choice for each
animal, this is most easily implemented by recursion, with three-way branching at each level. The
number of operations grows exponentially, so this algorithm is inappropriate for the larger test
cases.

Suppose the recursive function above took three parameters: L, the furthest left that the next
animal can go (because further left would collide with another animal), R, the furthest right that
the next animal can go, and A, the number of animals that have already been considered. This is
mathematically a function, in the sense that for a given (L, R, A) it will always return the same
value. We can thus store these values in an array, indexed by L, R and A. A simple way to modify
the recursion is to treat this array as a complete cache: if we have seen the same parameters before,
just return the value from the array; if not, compute the value as normal and save it in the cache
before returning it. This is known as memoisation. A variation of this technique called dynamic
programming is similar but works iteratively (looping over L, R and A to fill in the values in the
array using previously computed values), and can be optimised to reduce the memory overhead.



