
SACO 2005 Day 2 solutions

Bruce Merry

How not to be seen

Any tree that is at least as tall as both its neigh-
bours (or its one neighbour, for the edges) can-
not be destroyed by its neighbours, and hence
must be directly bombed. But if a tree has a
taller neighbour, either it is directly bombed or
it has an even taller neighbour and so on, so no
other trees need to be bombed.

Cheese

A brute force approach is to try every possible
order of removing the cheeses. This will score
50%, but for the worst cases there are 21999 pos-
sible orders — which will take until the end of
the universe to check.

A more efficient solution can be found by for-
mulating the problem mathematically. Let mi,j

be the amount of money that Mr. Wensleydale
can make starting at the point where cheeses i
and j are directly available (i < j). This can
only occur on day N +2− i−j — we abbreviate
this to di,j for convenience.

If Mr. Wensleydale has only one cheese to sell
there are no decisions to make, so mi,i = vidi,j .
However, if i < j then he can either sell cheese
i or cheese j. If he sells cheese i then he makes
vidi,j today and mi+1,j in the future; similarly
if he sells cheese j then he makes vjdi,j today
and mi,j−1 in the future. So

mi,j = max{vidi,j + mi+1,j , vjdi,j + mi,j−1}

for i < j. This can easily be turned into a recur-
sive function that takes i and j as parameters
and returns mi,j , but this is not much differ-
ent from the brute force solution. However, you
might notice that there are less than N2 possible
pairs (i, j) that can be passed to the function —
so if is being called about 2N times, then there
must be a lot of repetition.

Instead of using a function, one can instead
compute m as a two-dimensional array indexed
by i and j. The array is built in a double for-
loop, using the equation above. Some care is

needed to get the sequence right: i should it-
erate downwards and j should iterate upwards,
so that the right hand side is always computed
before the left hand side.

An alternative idea is to always sell the cheap-
est available cheese, hoping to let the more ex-
pensive cheeses mature. This does not always
work because it is a short-sighted approach. The
test data is set up so that this solution scores
only 20%.

Roads

The property that the Knights want England
to have is known as biconnectivity (connectivity
means there is at least one path, and biconnec-
tivity means at least two paths)1.

First consider an easier version of the prob-
lem, in which there is initially exactly one route
between any two castles. Such a network will
have N = M−1 and is known as a tree. The cas-
tles connected to only one other castle as known
as leaves. Clearly, any leaf needs another road to
it, since otherwise cutting off its only road would
leave it isolated. This implies a lower bound of
dN

2 e on the number of extra roads. What is less
easy to prove is that this is always sufficient.

Now consider the original problem. Some
roads are already redundant (i.e. they can be
cut off without separating England into two un-
connected networks). Other roads are critical
to the network, and are technically known as
bridges. The graph can be decomposed into bi-
connected components — subsets of the castles
which are internally biconnected but separated
from each other by bridges. Each biconnected
component can be replaced by a single castle,
since the internal routing is adequate and only
the external connections need to be considered.
This transformation reduces the graph to a tree,
and we can apply the algorithm above.

1There are actually two variations on biconnectiv-
ity — the more conventional one deals with routes that
share no castles rather than no roads.

1



Figure 1: roads0.in

Figure 2: roads1.in

Figure 3: roads2.in

Figure 4: roads3.in

Figure 5: roads4.in

Figure 6: roads5.in

2


