
SACO 2005 Day 1 solutions

Bruce Merry

Hungarian phrasebook

The brute force approach is to take something
said by a Hungarian and try to match it to any
of the phrase-book phrases. This solves the 50%
constraints, but is too slow for the 100% con-
straints.

A more efficient implementation uses a data
structure called a hash table. This structure has
similar properties to an array, but the lookup
is done on a string or other object rather than
an integer. All the prefixes of phrases are first
inserted into the hash table. The things said by
Hungarians are then looked up in the hash table
to determine whether they are prefixes.

Pascal does not provide a hash table class,
making this a difficult solution to implement.
An alternative solution is to sort the phrases.
If something said by a Hungarian is a prefix,
then the corresponding phrase will be the one
immediately after this in a dictionary order. So
instead of doing a linear search through all the
phrases, one need only do a binary search to
identify the phrase that is just after what was
said in the list of phrases.

Scales

The brute force approach tries every possible
combination of weights, adds them up, and
checks against the best current combination and
the upper bound. For 40 weights, there are 240

sets — roughly 1012, which is far too slow.
The unusual property of the weights (that

wi+2 ≥ wi+1 + wi) allows one to speed up the
algorithm. If we write

w3 − w2 ≥ w1

w4 − w3 ≥ w2

w5 − w4 ≥ w3

...
wi+2 − wi+1 ≥ wn

and then add up the equations, we obtain wi+2−

w2 ≥
∑i

j=1 wj . In other words, using the first
i weights will never give as much as just using
weight i + 2. Now consider the following cases:

• wN−1 + wN ≤ C: If we take everything
except wN , we get less than wN−1 + wN ,
in which case we might as well just take
wN−1 and wN instead. So either way, we
must take wN .

• wN ≤ C < wN−1 + wN : We cannot take
both wN−1 and wN . If we take neither then
we get less than wN and should just take
wN instead. So we must take exactly one
of them.

• C < wN : obviously we cannot take wN .

In the first and third cases, we know whether
to take wN , and repeat the problem using only
the first N − 1 weights and any remaining ca-
pacity. In the second case, we have to branch
and consider both cases, in each case solving
the problem for the remaining N − 2 weights.
In the worst case we will always have the sec-
ond case, causing us to branch two ways at each
level. However, there are only N

2 levels of re-
cursion (because we eliminate two, rather than
one, weight each time), so the running time is
proportional to 2N/2 rather than 2N .

Ni

Conceptually, this is a problem about shortest
paths. For each shrubbery, we need the short-
est path from Arthur to the shrubbery and from
the shrubbery to the Knights who say Ni. The
shortest path in a maze can be found using a
technique called breadth first search (BFS). Ini-
tially, the starting point is added to a queue.
Then, while the queue is not empty, the front of
the queue is removed and processed. Any neigh-
bours of this point that can be used but haven’t
yet been visited are added to the back of the
queue. Because a queue is first-come-first-serve,
the points nearest the start are processed first.

1



Figure 1: ni0.in

Figure 2: ni1.in

For each point, we also keep track of where it
was reached from so that we can reconstruct the
path.

An interesting feature of BFS is that it gives
you the shortest distance to all other points, not
just the target point of interest. We can exploit
this to speed up the solution. Instead of finding
the shortest path from each shrubbery to the
Knights who say Ni, we can find the shortest
path from them to all the shrubberies, and later
just reverse the path.

Figure 3: ni2.in

Figure 4: ni3.in

Figure 5: ni4.in

2



Figure 6: ni5.in

3


