
� ��� � �����
	��� �������
��������������� � �������! "	��

�%$ &

')(+*-,.(0/21+(+3�46567�8�4+909;: <>=?*@(BADC-EGF

OOvveerrvviieeww

Problem Paper Atoms Tree

Author Shen Tian Harry Wiggins Carl Hultquist

Program name paper.exe atoms.exe tree.exe

Source name paper.pas

paper.cpp

paper.c

paper.java

atoms.pas

atoms.cpp

atoms.c

atoms.java

tree.pas

tree.cpp

tree.c

tree.java

Input file paper.in atoms.in tree.in

Output file paper.out atoms.out tree.out

Time limit per test 1 second 1 second 2 seconds

Number of tests 10 10 10

Points per test 10 10 10

Total points 100 100 100

The maximum total score for Day2 is 300 points.

H�IKJML�N6O+N0PQI�R�S)TUTWV
S)X>Y!Z;N6O+[]\^H�I`_)Y!Z]aKP>J

bUP0_�c

September 28th 2003 Cape Town

PPaappeerr
Author
Shen Tian

Introduction
It is time for the Guji people’s annual harvesting festival.
According to tradition, the village prepared a mural in praise
of the Great Cow. At end of the festival, the mural is to be
divided amongst the various farmer of the village as a token
of good fortunes for the coming year. The parts for each
farmer have been drawn out on the mural already. It is time
to cut it. In order to do this honorably, the mural has to be
cut into two pieces each time, with a straight cut from one
side to the other.

Task
The mural is a rectangle of integer side lengths. The parts
marked out for each farmer are smaller rectangles, whose
sides are parallel to the sides of the mural. In addition, the
distances between the sides of the smaller rectangles are
integer length away from the sides of the mural.

Each cut must be a straight cut, parallel to a side of the
mural, and go all the way through the current piece (Once
cut, the piece becomes two other pieces). In other words,
you cannot cut half-way through a piece of the mural. Cuts
can cross each other, but may not overlap, or be along the
perimeter of the mural.

You are to decide the order and location of the cuts to be
made in order to divide the mural into the separate pieces for
each farmer.

Example

Consider this mural. To
divide it, the line labeled 1
should be cut first. Then,
since the mural is now in two
pieces, cut 2 can be made.
Cut 3 to divide the mural into
the required 4 pieces will
follow.

Sample Input
The first line of input will consist of two integers M and N,
separated by a single space. The next M lines will each
contain N characters (each character being one of a-z),
representing the mural. Each piece of the mural will be
represented using a different character. It is guaranteed that
the mural will be entirely divided into rectangles and that no
two distinct pieces will be represented by the same
character.

Example:

5 4
aabb
aabb
ccbb
ccbb
dddd

Sample Output
The first line of the output will contain a single integer x,
indicating the number of cuts needed. The next x lines
represent the cuts in the order they were made. Each of
these lines contains 4 space-separated integers, m1, n1, m2,
n2. Each line represents a cut, from (m1, n1) to (m2, n2) and
m1<= m2, n1<=n2. The top right left corner of the mural is
(0, 0) and the bottom right corner is (M, N). If there are no
valid ways of cutting the mural, print only a single line
containing “-1”.

Example:

3
4 0 4 4
0 2 4 2
2 0 2 2

Constraints
0 <= M, N <=100

Time limit
1 Second per test case.

Scoring
A correct solution earns 10 points. Any solution that makes
illegal cuts or does not correctly divide the mural scores 0
points.

d d
d d

d d

d dd dd dd dd d

d dd dd dd dd dd dd dd d
d dd dd dd d

d dd dd dd d

dddddddd
d d

ddddddddd dd dd d
d dd dd d

ddd
ddd

ddd

2

3

1

H�IKJML�N6O+N0PQI�R�S)TUTWV
S)X>Y!Z;N6O+[]\^H�I`_)Y!Z]aKP>J

bUP0_�c

September 28th 2003 Cape Town

AAttoommss
Author
Harry Wiggins

Introduction
The Guji physicist discovered a molecule consisting out of
N different atoms arranged in a single row. He numbered
them 1, 2, 3, … N. He built an "atommeter" that can access
any two distinct atoms simultaneously to work out the
distance between them. The distance between any two
consecutive atoms is the same.

The physicist would like to work out in which order the
atoms are arranged, but accessing the atoms excites them. If
the physicist accesses an atom more than 5 times the entire
molecule gets destroyed.

Task
Your task is to discover the order of the atoms with the least
number of accesses.
This interactive program uses stdin and stdout. The first
integer that you should read is the number of atoms in the
molecule. Then for each query of the atommeter you should
produce (via stdout) two integers separated by a space. After
each query you should accept an integer (via stdin).,
representing the distance between those two atoms.
When you have worked out the order of the atoms you
should print "-1 -1" (stdout) and on the next line you should
print your answer (stdout) and then exit your program.
Your answer should be a single line of space-separated
integers representing the atoms in the correct order.

Example

Output by your program
by stdout

Returned to your program
via stdin
3

1 2
1

2 3
1

3 1
2

-1 -1
3 2 1

Constraints
3<=N<=100

Time limit
1 second

Scoring
Let G be the maximum number of times an atoms was
accessed in your experiment. If your order is the correct
order or in reverse, you’ll get

100% if G = 3
70% if G = 4
30% if G = 5
0% if G>5

Using stdout and stdin

Pascal instructions
Do NOT use the CRT unit in your program. It can interfere
with the flow of data between your program and the
evaluator.

Perform the interaction as follows:
writeln(guess);
flush(output);
readln(reply);

C/C++ instructions
Perform the interaction as follows:
printf(”%d\n”, guess);
fflush(stdout);
scanf(”%s”, reply);

C++ instructions for C++ streams
Perform the interaction as follows.
cout << guess << ”\n”;
cout.flush();
cin >> reply;

Java instructions
Perform the interaction as follows, where in is a
BufferedReader in =
 new BufferedReader(
 new InputStreamReader(
 System.in));
System.out.println(guess);
System.out.flush();
guess = in.readLine();

H�IKJML�N6O+N0PQI�R�S)TUTWV
S)X>Y!Z;N6O+[]\^H�I`_)Y!Z]aKP>J

bUP0_�c

September 28th 2003 Cape Town

HHuutt TTrreeee
Author
Carl Hultquist

Introduction
The Guji tribe has a number of huts in their village, which
they wish to connect up with footpaths. Each hut is named
according to the family that lives inside that hut. Seeking a
challenge, the tribe wants to connect up the huts in a special
way so that the paths and huts form what is known as a
binary search tree.

This means that there is a "head hut" which forms what is
called the root of the tree. Each hut then has at most two
paths leading from it to other huts: the path to the left must
lead to the huts whose names are lexicographically
(alphabetically) less, whilst the path to the right must lead to
the huts whose names are lexicographically greater. For
example, in the figures below, (a) is valid because "Bana" is
lexicographically less than "Meemu" and so can be found by
following the path to the left, whilst "Ugi" is
lexicographically greater than "Meemu" and so can be found
by following the path to the right. Figures (b) and (c) are
invalid: in (b), "Bana" is lexicographically less than
"Meemu" but is found by following the right path (and not
the left one), and in (c), "Ugi" is lexicographically greater
than "Meemu" but it found by following the left path (and
not the right one).

(a)

(b)

(c)

To complicate matters, the tribe doesn’t want to do more
work creating paths than is absolutely necessary. For this
reason, the total length of path created must be minimised.

Task
Your job is to create the paths between the huts such that:

• The paths and huts form a binary search tree

• There is no other binary search tree whose total
path length is shorter than your total path length.

Example
The tribe has 4 huts that house the families of Ugi, Togo,
Bana and Meemu, and the distances between the huts is
shown in the table below:

Ugi Togo Bana Meemu
Ugi - 5 6 2
Togo 5 - 4 1
Bana 6 4 - 3
Meemu 2 1 3 -

Below is an example of a solution for this problem, which
has a total path length of 6. In this example, there is only
one binary search tree that has a total path length of 6. There
may be cases with multiple solutions, but you will only need
to find one of them.

Input Format
Input should be read from the file tree.in

The first line of input will consist of a single integer, N,
specifying the number of huts in the village. The next N
lines of input will then each consist of the name of each hut.
The following N lines will each contain N integers that
indicate the distance to the other huts in the village. Each
hut will have a unique name, and each name will consist of a
series of at most 20 lowercase letters. The distance from any
hut to itself is 0, and will be specified as such in the input
(but you may not build a path from a hut to itself). Also, if
the distance from hut I to hut J is D, then you are guaranteed
that the distance form hut J to hut I is also D.

H�IKJML�N6O+N0PQI�R�S)TUTWV
S)X>Y!Z;N6O+[]\^H�I`_)Y!Z]aKP>J

bUP0_�c

September 28th 2003 Cape Town

Sample Input
4
ugi
togo
bana
meemu
0 5 6 2
5 0 4 1
6 4 0 3
2 1 3 0

Output Format
Output should be written to the file tree.out

The first line of output must contain an integer L and name
R, separated by a space. L must be the total path length of
your solution, and R is the name of the root hut in the binary
search tree that you have found. The next N - 1 lines will
describe the paths that you have created. Each line must
contain two names, A and B, that represent the two huts
between which you have created a path. The paths can be
listed in any order, and the two huts forming the path can be
in any order.

Sample Output
6 ugi
ugi meemu
meemu bana
meemu togo

Constraints

• 3 • N • 250

• 1 • d • 100000, where d represents the distance
between any two huts

Time limit

2 seconds

Scoring
Any solution that does not produce output in the format
specified above will score 0. Any solution whose paths do
not form a binary search tree with the root specified will
score 0. If the total path length of the paths specified does
not match the total path length L, the solution will score 0.

Otherwise, if the optimal total path length is P and the total
path length in the solution is L, the solution will score:

S = 10 * [(P/L)3]

