
� ��� � �����
	��� �������
��������������� � �������! "	��

�%$ &

')(+*-,.(0/21+(+3�465+798:4<;0;=4 >6?@*A(CBED-FHG

OOvveerrvviieeww

Problem Trip Exam Plane

Program name trip.exe exam.exe plane.exe

Source name trip.pas

trip.cpp

trip.java

exam.pas

exam.cpp

exam.java

plane.pas

plane.cpp

plane.java

Input file trip.in exam.in plane.in

Output file trip.out exam.out plane.out

Time limit per test 5 seconds 5 seconds 5 seconds

Number of tests 10 10 10

Points per test 10 10 10

Total points 100 100 100

IKJ)L�M�NPO
QRMCSPM T<UET<N�V6WPX6UEY<L[Z=UEY]\
N6^:_�Q`W%acb:b�d6U�Q�e6T<WEf

g�h`ikj�l<m+l0nPh�o�p)q:qsr
p)t6u!vwl<m+x=yzg�h|{)u!v=}`n6i

~:n0{��

�)�+�-�.�0�2�+�+���6�+�9�:�<�0�=� �6�@�A�C�E�-�H�

PPaacckkiinngg ffoorr aa TTrriipp

AAuutthhoorr:: KKuurrtt KKrruuggeerr

Description
Jack (of “Jack & Jill” fame) has decided, on a whim, that he
has lead too secluded a life. He has never once ventured into
the city, and its bright lights and lavish lifestyles have
finally caught his eye. Jill, ever the optimist, steadfastly
believes that Jack will return and as such has found the
smallest possible bag for Jack to pack for his trip. Jack,
however, believes that after his foray into modern society,
he will no longer want to return and therefore wants to pack
all the necessities possible.

Task
Jack has never been a materialist and so only has a small
collection of personal items, but you may assume that he has
an infinite number of each item (Jill is very resourceful).
Each of the K items occupies a certain volume N and has a
utility value M. He wants to pack his bag so that he gains the
maximum utility from the items it contains, without having
the bag overflow, as his stay may be longer than just a few
days.

Input (trip.in)
The input file, “trip.in”, will consist of (2+K) lines of data,
where the first line will consist of a single integer, C,
representing the capacity of the bag. The second line
consists of a single integer, K, representing the number of
items Jack has to choose from. The next K lines consist of
two single-space separated integers Ni and Mi which,
respectively, are the volume and utility value of the ith

item.
NOTE: There may be duplicate lines in the input file
(assume that they are simply different items occupying the
same volume and having the same value).

Sample input:
trip.in

Output (trip.out)
NOTE: there are a number of correct solutions you must
only output ONE.
The output file, “trip.out”, will consist of (d+1) lines of
data, where d is the number of items Jack has chosen. The
first line must be a single integer representing the total
utility value of the items Jack has placed in the bag. The
following d lines must consist of two single-space separated
integers representing the corresponding volume and utility
value of the jth item chosen.

Sample output:
trip.out

Constraints
The input is restricted to the following:
1 • C • 1024
1 • K • 1024
1 • Ni • 1024
1 • Mi • 2048

Time Limit:
Maximum time allowed per test case in seconds 5.

Scoring:
5 points are scored for a correct maximum utility value and
another 5 points are scored if the correct items appear in the
output file.
NOTE: there are a number of correct solutions you must
only output ONE.

17
5
3 4
4 5
7 10
8 11
9 13

24
7 10
7 10
3 4

���`�k���<�+�0�P�����)�:�s
�)¡6¢!£w�<�+¤=¥z���|¦)¢!£=§`�6�

¨:�0¦�©

ª)�+�-«.�0¬2+�+®��6¯+�9�:�<�0�=� �6�@�A�C�E�-�H�

EExxaamm

AAuutthhoorr:: CCaarrll HHuullttqquuiisstt

Description
Jack is very unhappy: he's stuck writing a really difficult
maths exam (a course on logic, which makes things tricky
for Jack since he's very illogical!) The whole exam is made
up of what are termed boolean expressions, these are simply
boolean variables and the three fundamental Boolean
operators and ‘.’, or ‘+’ and not ‘!’. Here's a reminder of
what these operators do:

a b a.b a+b !a !b

F F F F T T

F T F T T F

T F F T F T

T T T T F F

Task
So we have ‘.’ and ‘+’ that operate on two variables, whilst
‘!’ only operates on one variable. In the case of ‘.’, if both
variables a and b are true, then a.b is also true, otherwise a.b
is false. For ‘+’, if at least one of the variables a and b is
true, then a+b is true. If neither a nor b are true, then a+b is
false.
Considering ‘!’, if a is true, then !a is false. So ‘!’ changes
the truth of the variable it applies to.

Jack might be given the following expression:

(a+b).((b+(!c))+(!a))

What Jack has to do is work out values for a, b and c to
make the expression above true.
One set of values that works is:

a false
b true
c true

There could, however, be others, all Jack has to do is find
one of these solutions. Fortunately, Jack has smuggled his
cellphone into the exam and will SMS you each problem,
since he knows you're good at this stuff. ;-)

Input (exam.in)
The first line of “exam.in” will consist of one integer N, 0 <
N < 50, which is the number of variables in the expression.
The next N lines will each contain a string giving the name
of each variable. Each variable name is limited to a single

case sensitive character. The next line of the input file will
be the expression, consisting of variable names, brackets,
and the three operations: ‘+’, ‘.’ and ‘!’. To avoid
ambiguity, each operation will be put in its own set of
brackets. The maximum length of the expression will be
255 characters.

Sample input:
exam.in

Output (exam.out)

The file `exam.out' will describe exactly one satisfying
solution to the given problem. `exam.out' should consist of
exactly N lines, one for each variable. Each line should
consist of a single character (which is the variable being
described), followed by a space, followed by either "true" or
"false" to indicate whether the variable is true or false
respectively. No variable may be repeated in the output, and
the variable may be output in any order.

Sample output:
exam.out

In this case, there are five solutions:
{{a false, b true, c true}, {a true, b true, c true}, {a false, b
true, c false}, {a true, b true, c false}, {a true, b false, c
false}} any one of which could be given as the answer.

Constraints
0 < N < 50
0 < length of expression ≤ 255.
Each expression is guaranteed to have a solution.

Time Limit:
Maximum time allowed per test case is 5 seconds

Scoring:
If your output file differs from the format above, you score
0.
Otherwise, you score 10 points if the solution you provide is
valid (i.e. the expression is true when the variables have the
values you specify).

3
a
b
c
(a+b).((b+(!c))+(!a))

a false
b true
c true

°�±`²k³�´<µ+´0¶P±�·�¸)¹:¹sº
¸)»6¼!½w´<µ+¾=¿z°�±|À)¼!½=Á`¶6²

Â:¶0À�Ã

Ä)Å+Æ-Ç.Å0È2É+Å+Ê�Ë6Ì+Í9Î:Ë<Ï0Ï=Ë Ð6Ñ@ÆAÅCÒEÓ-ÔHÕ

PPllaannee

AAuutthhoorr:: BBrruuccee MMeerrrryy

Description
Jack and Jill are worried that one day there will be a drought
and they won't be able to walk up the hill to fetch water.
They have come up with a drastic solution: they will create
their own airline that flies all over the country, so that they
can always fetch water from somewhere. However, they
don't have much money to buy planes. They need your help
to find how many planes they need. They also need to know
where to have the planes delivered to so that they are ready
for their first flights.

Task
Jack and Jill have already worked out exactly which flights
they intend to offer. Unlike most airlines, flights are all one-
way. Each flight starts at a particular time at one city and
ends at a different city, and has a "turnaround time”.
The “turnaround time” is the time between departing the
original city and being ready to depart the destination city.
The “turnaround time” between two similar flights may
differ.
For example, a plane that flies an 8:00 flight from Port
Elizabeth to Cape Town with a turnaround time of 3 hours
can be used for flights leaving Cape Town at 11:00 or later.
A similar flight from Port Elizabeth to Cape Town could
have a turnaround time of 4 hours and would be ready to
leave Cape Town at 12:00.

To keep things simple, the flights are the same every day.
There may be multiple flights between two cities, possibly
even at the same time. Due to the fact that Jack and Jill can
only afford very cheap planes, flights may be overnight and
may last longer than 24 hours. The planes are all the same
and so any plane may be used for any flight, provided that it
is at the correct city at the appropriate time. You cannot
move a plane from one city to another by making an
unplanned flight or by using two planes on one flight (this is
why it is important to have the planes delivered to the
correct cities when they are ordered).

Jack and Jill will declare the airline open at midnight on
some day. All planes that are scheduled to depart at
midnight will immediately depart.

Input (plane.in)
The first line of the input file “plane.in” contains two
integers, N and F,
separated by a single space. N is the number of cities (which
are numbered 1 to N) and F is the number of flights per day.

 The following F lines each describe a flight. A flight is
described by 4 space separated integers: A B S T. The flight
is from city A to city B, departs at S seconds after midnight
(there are 86400 seconds in a day) and has a turnaround time
of T seconds.
It is guaranteed that each airport has as many incoming as
outgoing flights.

Sample input:
plane.in

Output (plane.out)
The output consists of N lines. On line i, output the number
of planes that Jack and Jill must have delivered to city i.

Sample output:
plane.out

Constraints
2 • N • 1000
1 • F • 10000
For each flight:
1 • A • N
1 • B • N
A • B
0 • S < 86400
0 < T < 1000000

Time Limit:
Maximum time allowed per test case is 5 seconds

Scoring:
If at any time Jack and Jill have a planned flight but no
plane available to fly it, you will score 0. Otherwise you
will score 100% for a correct solution, and lose 20% for
each unnecessary plane that you use.

4 6
1 2 0 100000
3 1 20000 10000
1 4 45000 5000
3 1 40000 10000
4 3 60000 100
2 3 10000 10000

1
2
1
0

