
� ��� � �����
	��� �������
��������������� � �������! "	��

# �%$ &

September 2001 Cape Town

OOvveerrvviieeww

Problem Count Codes Roads

Program name count.exe codes.exe roads.exe

Source name

count.pas

count.java

count.cpp

codes.pas

codes.java

codes.cpp

roads.pas

roads.java

roads.cpp

Input file count.in codes.in roads.in

Ten (10)Output files countn.out codes.out roads.out

Time limit per test 5 seconds 5 seconds 5 seconds

Number of tests 10 10 10

Points per test 10 10 10

Total points 100 100 100

')(+*�,�-/.
01,32/, 465746-�8:9/;:57<6*>=?57<A@
-:BDC�0E9%FHGDG�I:5�0�J:4697K



L�MENPO�Q6RSQUT/M�V�W+XDXZY
W+[:\!]^Q6RS_?`aL�Mcb+\!]?dET:N

eDTUbgf

September 2001      Cape Town

CCoouunntt  ((110000))  bbyy  BBrruuccee  MMeerrrryy

Description
In deepest Africa lives a tribe known as the Guji. The tribe
has been expanding continuously for years and the chief is
having difficulty keeping the tribal records up to date.  He
has employed an accounting student from UCT to help him
with the records.  However, they have run into problems
because the Guji tribe does not use the decimal counting
system.
In the decimal system, each digit is between 0 and 9, and
represents a multiple of a power of 10. For example, 2301
represents 2 x 10^3 + 3 x 10^2 + 0 x 10^1 + 1 x 10^0. In the
Guji counting system, the nth number from the right
(counting from 1) is between 0 and n and represents a
multiple of n!, where n! = 1.2.3...n. So for example 2301
would represent the number 2 x (1.2.3.4) + 3 x (1.2.3) + 0 x
(1.2) + 1 x (1), and the number 2301 in decimal would be
represented as 310311 in Guji notation.

Task
 To help the chief and the accountant, you must do a number
of conversions between decimal and Guji numbering.

Input (count1.in - count10.in)
You are provided with 10 input files, named count1.in,
count2.in, ...count10.in.  Each file has the following format:

Line 1: Either the character `D' or the character `G'
Line 2: A number in either decimal or Guji.
If the first line is `D' the number will be decimal and if the
first line is `G' it will be Guji.

Sample input:

Output (count1.out - count10.out)
For each input file you are expected to produce an output
file with the same name but the extension .out (so the output
file for count3.in is count3.out). Note that only your output
files are marked, not the program that you write (you may
even choose to do the conversion by hand if you wish).

The output file consists of a single line, containing only the
conversion of the number in the input file to the other
counting system (i.e. if the input is in decimal, the output
must be the same number in Guji and vice versa).

Sample output:

Constraints
The number will be a positive integer less than or equal to
987654321 in the Guji numbering system (3628799 in
decimal).

Time Limit:
Maximum time per test case 5 seconds

Scoring:
10 points for each correct output file.
0 points for each incorrect output file.

D
2031

244211



L�MENPO�Q6RSQUT/M�V�W+XDXZY
W+[:\!]^Q6RS_?`aL�Mcb+\!]?dET:N

eDTUbgf

September 2001      Cape Town

CCooddeess  ((110000))  BByy  BBrruuccee  MMeerrrryy

Description
The Guji tribe of deepest Africa have recently discovered
some ancient writings in the walls of some caves. Although
the Guji language has remained the same over the centuries,
the way it is written has changed completely and the Guji
are having difficulty reading it. They want you to write a
program that can help them.
The ancient writing consists of groups of symbols, separated
by dots.  For the purposes of the program, the different
symbols can be represented by the digits 0 to 9. A typical
word might look like 2732.170.23.99. Each valid group has
been replaced in modern Guji writing by a single letter from
the English alphabet (you are given the mapping between
the modern letters and the old groupings).

Task
Unfortunately the passage of time has work away the dots
and made the writing almost impossible to decipher! For
example, the word above now appears as 27321702399 and
it is impossible to tell where one grouping ends and the next
begins. Your program is required to output every sequence
of English letters that could correspond to the ancient word
(you do not need to worry whether the sequence of letters
forms a valid Guji word).

Input (codes.in)
The first line contains the ancient form of the Guji word, as
a sequence of digits (no dots) without any spaces separating
them. The 2nd line contains N, number of letters from the
English alphabet that the Guji use in their modern writing
(they do not need the full alphabet). The remaining N lines
each contain an English letter, then a space, then the symbol
grouping that corresponds to that letter. All letters are upper
case and no letter is repeated. However more than one letter
may correspond to the same symbol group.

Sample input:

Output(codes.out)

The output file should consist of a series of lines, each
containing a possible English character string that might
correspond to the ancient writing. The lines do not have to
be in any particular order but no string should be duplicated.
The letters should be in upper case.

Sample output:

Constraints:

Let L be the length of the ancient word, N be the number of
valid groupings, Gi be the length of the ith valid grouping
and S be the number of solutions. Then

1 <= L <= 200
1 <= N <= 26
1 <= Gi <= L
1 <= S <= 5000

Time Limit:
Maximum time per test case 5 seconds

Scoring:
One point is awarded for each distinct correct string. One
point is removed for each distinct incorrect string. Two
points are removed for every duplicate in the file. The score
is then scaled so that a perfect solution gets 100%. Negative
scores are converted to 0.
If any line of the output file contains letters or other
characters not listed in the input file then an immediate
score of 0 is given.27321702399

7
I 399
R 17023
T 99
U 21
J 702
G 273
A 2732

GUJI
ART



L�MENPO�Q6RSQUT/M�V�W+XDXZY
W+[:\!]^Q6RS_?`aL�Mcb+\!]?dET:N

eDTUbgf

September 2001      Cape Town

RRooaaddss  ((110000))

Description

The town planner of a small town that would prefer to stay
nameless is planning a new tourist route through the town.
She wants to introduce the tourists to all the beauties of the
town, thus the route must travel over every road.  She would
also like to promote the businesses on both sides of each
road.  Thus the route must travel across each road in both
directions (you may assume that there are no one-way
roads).  To avoid making the tour tedious, every road must
be traversed exactly once in each direction.  Furthermore,
the tour must start and stop at the bus depot.  Every road in
the town is reachable from the bus depot. There are no roads
that start and end at the same intersection and between any
pair of intersections there can be at most one road.

Task
The town planner has provided you with a road plan of the
town.  This plan contains information on all the intersections
and roads in the town.  The intersections are labeled by
positive integers for simplicity.  A list of roads is given.
The description of a road is simply the numbers of the two
intersections connected by the road.  The bus depot is at
intersection 1. (i.e. the tour must start and stop at
intersection 1).  Your task is to construct a suitable route for
the town planner, given the layout of the roads in the town.
There will always be a route that satisfies the requirements.
There may be more than one appropriate route, but you are
only required to find one.

Input
The first line of the file ‘ROADS.IN’ contains the number
of intersections N followed by the number of roads R.  The
next R lines contain the numbers of two intersections joined
by a road on each line.

Output
Your output file, ‘ROADS.OUT’, must contain in order the
intersections visited by the tour, one intersection per line.
Thus the first and last lines of the file should both contain
‘1’.

Example
ROADS.IN

ROADS.OUT (possible solution)

Constraints
1<N<=5000
1<=R<=32000

Time
Maximum time per test case 5 seconds

 Scoring
There will be 10 test cases, each of which will be weighted
equally.  Each test case can only score either 100% or 0%,
depending on whether the solution is valid.

1

2

3

4

65

explanation

1
3
2
6
5
6
2
3
4
6
4
3
1

6 6
1 3
6 5
3 4
2 6
6 4
2 3


