
IOI Squad May Contest, 2009 Solutions

IOI Squad 2009

1 Jelly

At a glance this problem is similar do the corridor-tiling problem in the second
round 2008. But there’s a catch: not only to you need to worry about segments
of different colours, you also need to make sure that arrangements using different
segments of the same colour are only counted once.

The 30% solution is simply brute force: Try every possible arrangement
and store them in a set so that no arrangement is counted more than once.
The number of elements in the set can then be counted and the number of
palindromic elements can be found by iterating through the set.

However, unsurprisingly, the real solution uses dynamic programming like
the tiling problem. Let f(n) denote the number of designs with length n. The
first recurrence that comes to mind is f(n) = C · (f(n − 2) + f(n − 3)), but
this counts arrangements like RRR | RRR and RR | RR | RR separately. So we
subtract the number of arrangements that would be counted twice. These are
the arrangements that have identical colours up to position n− 3, but may use
different segments to get there. This turns out to be the definition of f(n − 3)
so that is what we subtract.

The final recurrence is f(n) = C · f(n − 2) + (C − 1) · f(n − 3). This alone
will get you 50% and combining it with the brute-force for smaller N will get
65%.

Dealing with palindromic arrangements requires quite a bit of thought. It
helps to think of a mirror being placed in the middle of the tube and reflecting
the first half of the design. The cases where N is odd and even need to be
considered separately, as when N is odd, the mirror lies on top of a jelly tot and
when N is even, it lies between two jelly tots.

Let’s first consider N being odd. The number of palindromic arrangements
would be the designs up to the middle element, that can also be found if the
middle element were removed. It turns out that every design can still be found
if the middle element were removed. Therefore the number of arrangements is
f(dN/2e).

For even N , it is more complicated. For odd N , we didn’t need to consider
segments that overlapped the half-way point as 3-jelly-tot segments became 2-
jelly-tot segments and 2-jelly-tot segments could be declared part of the reflected
side. For even N , we add the number of ways that 3-jelly-tot segments can
overlap the half-way point. Since these start at N/2 − 1 and can be any colour

1

there are f(N/2 − 1) · C such arrangements. But again, we have to discard the
designs that can be found in this way and by simply working with two separate
halves, as these have been counted twice. The final number of palindromic
arrangements for even N is f(N/2) + f(N/2 − 1) · (C − 1).

All of this will get you 100%. Just be carefull of one cruel catch. When
adding the total number and number of palidromic designs and dividing by
two, you are dividing over a modulus. What if the modulus were 5 and the
dividend were 6 mod 5? Dividing 1 by 2 gives 0, not three as expected. Instead
multiply the dividend by the inverse of 2 mod 5. This turns out to be the
modulus plus one over two. Then taking the modulus of the final result will
yeild the final answer. Failing to do this gets 75%. Sorry :-(.

2 Tiling Mall

2.1 Using Matrices

Now the solution for this problem is DP and with the constraints at a rather
low 5 000 000 you should be easily be able to run any one dimensional DP in
time. Now, however, let’s suppose the contraints we’re set at something much
higher like 10 000 000 or even worse. Here even our DP’s O(N) running time
fails us. So we need another solution.

The solution is to use matrices.1 Using matrices allow us to achieve a much
faster running time of O(log N). This will easily run in time, but it takes a bit
more effort to code up and come up with.

The first step to solving the problem using matrices is to solve it as you
would normally solve a DP problem. But that is not the scope of this solution,
so I’ll simply present the solution here.

Let An represent the number of possibilities for the following shape, with n
being the shape’s length from the leftmost to rightmost point:

Similarly for Bn:

And Cn:
1See Graham’s Lecture on Linear Recurrences at the 2nd Camp 2009: http://olympiad.

cs.uct.ac.za/presentations/camp2 2009/lin recurrences.pdf

2

http://olympiad.cs.uct.ac.za/presentations/camp2_2009/lin_recurrences.pdf
http://olympiad.cs.uct.ac.za/presentations/camp2_2009/lin_recurrences.pdf

And Dn:

And finally En:

Then you get the following recurrence relationships for the above terms:

• An = Bn + Cn

• Bn = An−1 + Bn−1

• Cn = En + Dn−1

• Dn = An−1 + Dn−2

• En = An−2 + Bn−1

And you have the following base states:

• A0 = A1 = 1

• B0 = 0 and B1 = 1

• C0 = C1 = 0

• D0 = 0 and D1 = 1

• E0 = E1 = 0

So now we have all the information we need for the normal DP solution and
just and just have to construct the matrices, but the recurrence relationships
we currently have are in an unfavourable form for this, consider An = Bn +Cn.
This makes setting up the matrices really difficult, because you can’t calculate
and use An, Bn and Cn in the same step, so you somehow have to calculate
the latter two in the step before the current one and this can get messy. The
solution to this is to simply play around with the equations a bit.

3

The first change we make is to get rid of the En state entirely, by substituting
it into the only term it is used, Cn. We need to do this or else we will have to
calculate both Cn and En in the same step or somehow have to calculate En in
the previous step. Getting rid of a term is also a very minor optimisation and
thus we killed 2 birds with 1 stone. So we get:

Cn = An−2 + Bn−1 + Dn−1

The next thing we can and have rewrite is An. So

An = (An−1 + Bn−1) + (An−2 + Bn−1 + Dn−1)
= An−1 + An−2 + 2Bn−1 + Dn−1

What you should also note now is that you can throw away the Cn term as
it is no longer being used in any of the other recurrence relationships, so you
now only have An, Bn and Dn. But you don’t have to throw it away as the
only penalty is a few extra calculations and a bit more memory; your results
will still be correct.

Now all your recurrence relationships rely only on previous states, so things
are good. You shouldn’t be worried by the fact that you have both An−1 and
An−2 in your recurrence relationships, to get around that you just store both
of them in your current state.

So now let’s get to the format of our current state, Sn, which be in the form
of a 5 × 1 matrix:

Sn =

An

An−1

Bn

Dn

Dn−1

Let’s name our recurrence matrix M , note that it has to be of size 5× 5 and

has to satisfy:
Sn = M × Sn−1

From the recurrence relationships and our definitions of the current state we
can easily deduce the value of M . If you are struggling with this, take some
time and consider the definition of matrix multiplication, playing around with
it until it makes sense.

M =

1 1 2 1 0
1 0 0 0 0
1 0 1 0 0
1 0 0 0 1
0 0 0 1 0

Now S1 acts as our base case:

S1 =

1
1
1
1
0

4

So we finally end up with:

Sn = MN−1 × S1

Then the answer to the original problem is An as defined in Sn.
Note: For your solution to run in O(log N) you need to use a power function

that also runs in O(log N).

2.1.1 Implementation Problems and Tips

This section details some tips for writing up the solution and some problems you
might encounter while writing up the solution. This section is focussed mainly
on C++, but some of the advice might be useful in other languages as well.

Tips:

• Instead of inputting your values for S1 and M matrix directly into the
matrices using their accessors, rather store them in a native array that’s
visually formatted to look like a matrix in maths. This way you can easily
check if the values you inputted are correct and can also easily correct
them.

• If N = 1 the power function you use or implemented might not work cor-
rectly, as it would need a 5× 5 identity matrix. Rather than constructing
an identity matrix you can just explictly test for this case and just use the
S1 as is.

• Use the power function in <ext/numeric> as it’s simple to use and runs
in O(log N).

Potential Problems:

• If you use a destructor, as you’ll likely use dynamically allocated memory,
remember to write a copy constructor and assignment operator.

• As 1 000 0072 is bigger than a normal int, remember to either store your
matrix values as long longs or convert them to long longs before doing your
multiplication, modulus by 1 000 007 and convert them back to normal
ints.

• Remember to modulus your values by 1 000 007 after every calculation to
prevent overflows and to get the correct answer.

5

