
South African Computer Olympiad
Training Camp 3 2007

Day 2

Overview

Author Max Rabkin Marco Gallotta Keegan
Carruthers-
Smith and

Bruce Merry

Problem express growth stacking

Source express.c
express.cpp

growth.c
growth.cpp

stacking.c
stacking.cpp

Input file stdin stdin stdin

Output file stdout stdout stdout

Time limit 1 second 2 seconds 1 second

Number of tests 10 10 10

Points per test 10 10 10

Total points 100 100 100

The maximum total score is 300 points.

http://olympiad.cs.uct.ac.za/contest.html

Mon 13 Aug 2007



South African Computer Olympiad
Training Camp 3 2007

Day 2

Shortest
Expressions

Author

Max Rabkin

Introduction

Fred the Manic Storekeeper has decided it is finally time
for him to stop outsourcing his programming work to you,
and learn some IT skills himself. He went looking for the
cheapest compiler, but being ignorant of free software, he
found a rather terrible one.

The compiler has a severe limit on the size of numeric
literals; larger numbers must be built up from expressions.
To make matters worse, it accepts mathematical expres-
sions in postfix notation.

Postfix notation works like this:

• The expression is scanned from left to right.

• Each number encountered is pushed onto a stack.

• Each operator encountered pops its operands off the
stack and pushes the result.

Fred still needs some help before he can write programs
entirely on his own.

Task

There are some large numbers in Fred’s program, which
he has coded like this:
five ← 1 1 1 1 1 + + + +
Unfortunately, the compiler is extremely slow, so long

expressions make compilation times unbearable. Fred
needs you to write a program that generates the short-
est expression for a given number.

Example

The shortest expression (using numbers less than ten) that
generates 19 is 1 2 9 * +, or 1 + 2 ∗ 9 in infix notation.

Input (stdin)

The input consists of a single line containing two integers:
N , the number for which you must generate an expression,
and M , the maximum numeric literal allowed.

Sample input

19 9

Output (stdout)

The first line of the output consists of an integer L, the
number of tokens (numbers and operators) in the expres-
sion.

The second line consists of L space-separated tokens.
Each token is a non-negative integer, + or *.

Sample output

5
1 2 9 * +

Constraints

• 1 ≤ N ≤ 20000

• 1 ≤M ≤ 20000

50% constraints

• 1 ≤ N ≤ 40

• 1 ≤M ≤ 40

Time limit

1 second.

Scoring

If your output is incorrectly formatted, or the expression
does not evaluate to N , or contains numbers greater than
M you will score 0%.

If you produce the shortest possible expression, you will
score 100%.

Otherwise, you will score K
L ·50%, where K is the short-

est length.

Mon 13 Aug 2007



South African Computer Olympiad
Training Camp 3 2007

Day 2

Growth of the
Shrubberies

Author

Marco Gallotta

Introduction

The Knights who say Ni have been very busy collecting
shrubberies over the years. Recently they have been hear-
ing rumours of large numbers disappearing from time to
time. They suspect King Arthur is stealing them, but
their collection has grown so large that it’s not easy catch-
ing him out.

Before they can have him arrested, they need to prove
his guilt. The first step in doing so is to determine the
growth of their collection. If there is a negative growth,
then they can arrest King Arthur for his crime. If they
find a positive growth, then they can compare the growth
rate to their incoming shrubberies and attempt to prove
his guilt.

Task

Due to the large size of their shrubbery collection, they
can only estimate its size at any one time. Comparing
estimates directly is inaccurate. Fear not though, as one
of the Knights has come up with a plan. To measure
the growth, his plan is to look for subsets of fixed length
from the data that indicate a strictly increasing number
throughout the entire subset. A lack of such patterns
should provide the perfect evidence against King Arthur.

The recorded history of growth goes back a long time
and even will all the Knights working together they cannot
find the patterns. It is therefore your task to determine
the number of such patterns given the Knights’ records.

The number of patterns found can get very large. The
number found should therefore be given modulo 109, i.e.
the remainder when divided by 109.

Example

Suppose the estimate of the number of shrubberies over
the past four days were 20, 40, 10 and 50 and the Knights
want to find strictly increasing subsets of length 2. There
is an increasing growth from 20–40, 20–50, 40–50 and 10–
50 giving a total of 4 subsets. 4 modulo 109 gives a final
answer of 4.

Input (stdin)

The first line will contain two space-separated integers, N
and K, the number of records and the subset length to
search for. The next N lines each contain a single integer,
Vi, which is the estimate on day i.

Sample input

4 2
20
40
10
50

Output (stdout)

Your output should consist of a single integer — the num-
ber of patterns found modulo 109.

Sample output

4

Constraints

• 1 ≤ N ≤ 10000

• 1 ≤ K ≤ 100

• 1 ≤ Vi ≤ 1000000

50% constraints

• 1 ≤ N ≤ 1000

• 1 ≤ K ≤ 10

Time limit

2 seconds.

Scoring

A correct answer scores 100%, while an incorrect one
scores 0%.

Mon 13 Aug 2007



South African Computer Olympiad
Training Camp 3 2007

Day 2

Block Stacking

Author

Keegan Carruthers-Smith and Bruce Merry

Introduction

Mr Cutler is trying to convince Sir William of the Society
of Putting Things on Top of Other Things is a pointless
exercise. He is using the classic Stacking Blocks game as
an example.

The game consists of an unlimited supply of blocks of
C different colours. Over T seconds you can do one of the
following every second:

• Put a block of some colour on top of the stack.

• Remove a block from the top of the stack. (There
must be one)

Some colours are not aesthetically pleasing together, so
they can never be on the stack at the same time. Colours
are labelled 0 to C − 1

The game starts with an empty stack. The game ends
when the T seconds are up. The game must end with an
empty stack.

Task

Count the number of possible ways this game can be
played. Two schedules are different if at some point in
time, the corresponding stacks have different sequences of
colours.

Hopefully the large number of different possible combi-
nations will convince Sir William that putting things on
top of other things is pointless.

Example

If you have C = 3 colours, T = 4 seconds and colours 1
and 2 can not be on the stack at the same time, then the
possible stack configurations are

• t = 0,

• t = 1 or 3, 0

• t = 1 or 3, 1

• t = 1 or 3, 2

• t = 2,

• t = 2, 0 0

• t = 2, 0 1

• t = 2, 0 2

• t = 2, 1 0

• t = 2, 1 1

• t = 2, 2 0

• t = 2, 2 2

• t = 4,

This gives a total of K = 16 schedules. Note that we do
count the empty stack at t = 0 or at t = 4 even though
they are implied to be empty. Also note that K gets
modulo 1000001.

(
106 + 1

)
Input (stdin)

Data is read in from standard input. The first line of in-
put contains two space-separated integers, T and C. The
second line contains a single integer N . The next N lines
contain 2 space-separated integers, ai and bi. These rep-
resent colours that cannot be on the stack at the same
time.

Sample input

4 3
1
1 2

Output (stdout)

You must write to standard output a single integer,
K%1000001, representing the number of possible ways to
play the game.

Sample output

16

Constraints

• T is even

• 2 ≤ T ≤ 100

• 1 ≤ C ≤ 10

• 0 ≤ N ≤
(
C
2

)
≤ 45

• 0 ≤ ai, bi ≤ N − 1

Mon 13 Aug 2007



South African Computer Olympiad
Training Camp 3 2007

Day 2

50% constraints

• 2 ≤ T ≤ 10

Time limit

1 second.

Scoring

100% for the correct K, 0% otherwise.

Mon 13 Aug 2007


