
� ��� � �����
	��� �������
��������������� � �������! "	�� #$�%	� "&� "&('

) �+* ,

-/.102.4365�798;:
<>=?=@< ACB2DFEHG/I4JLK

OOvveerrvviieeww

Problem Score Jill's Genome Latin
Squares

IOIWari
board game

Submitted By Jacques Kurt Hienrich Graham
Program name score.exe gene.exe latin.exe ioiwari.exe

Source name
score.pas

score.cpp

gene.pas

gene.cpp

latin.pas

latin.cpp

ioiwari.pas

ioiwari.cpp

Input file score.in gene.in latin.in ioiwari.in

Output file score.out gene.out latin.out ioiwari.out

Time limit per test 5 seconds 1 seconds 5 seconds 5 seconds

Number of tests 10 10 5 25

Points per test 10 10 20 4

Total points 100 100 100 100

MONQP�R�SUT
VWRHXUR Y>Z/Y>S�[C\U]CZ/^>P`_@Z/^ba
SCc(d�Ve\+f%g(g�hCZ�V�iCY>\/j

k�lemon�p>qrp?sUl�t�uQv(vxw
uQyCz!{9p>qr|@}~k�l��Qz!{@�esCm���}4sQ�;�9�;�2�

�(s?���

�/�1�2�4�6���9�;�
�>�?�@�
 �C�2�F���/�4�L�

SSccoorree

AAuutthhoorr:: JJaaccqquueess

Description
The more points a student score at training camps, the
happier we as the training staff will be. We try to design our
contests so that people can score as many points as possible,
and would like your assistance.
We have several categories from which problems can be
chosen, where a "category" is an unlimited set of contest
problems which all require the same amount of time to solve
and deserve the same number of points for a correct
solution.

Task
Your task is write a program which tells our staff how many
problems from each category to include in a contest so as to
maximize the total number of points in the chosen problems
while keeping the total solution time within the length of the
contest.
Your program should determine the number of problems we
should take from each category to make the highest-scoring
contest solvable within the length of the contest. Remember,
the number from any category can be any non-negative
integer (0, one, or many). Calculate the maximum number
of possible points.

Input (score.in)
The input includes the length of the contest M, 1 <= M <=
10,000 (don't worry, you won't be forced to take part in the
longer contests) and N, the number of problem categories,
where 1 <= N <= 10,000.
Each of the subsequent N lines contains two integers
describing a category:
the first integer tells the number of points a problem from
that category is worth 1 <= points <= 10000;
the second tells the number of minutes a problem from that
category takes to solve 1 <= minutes <= 10000.

Line 1:
M N, contest length in minutes (M) and number of problem
classes (N)
Subsequent lines 2 … N+1:
Two integers, the points and minutes for each class

Sample input:
score.in

Output (score.out)

Sample output:
score.out

Constraints
1 <= M <= 10,000
1 <= N <= 10,000
1 <= points <= 10000
1 <= minutes <= 10000

Time Limit:
Maximum time allowed per test case is 5 seconds

Scoring:
10 points for each correct output.
0 points for each incorrect output.

300 4
100 60
250 120
120 100
35 20

605

���e�o���> r�?¡U��¢�£Q¤(¤x¥
£Q¦C§!¨9�> r©@ª~����«Q§!¨@¬e¡C���ª4¡Q¬;®9¬;®2¯

°(¡?«�±

²/³1´2³4µ6¶�·9¸;¹
º>»?»@º
 ¼C½2¾F¿�À/Á4ÂLÃ

JJiillll''ss GGeennoommee

AAuutthhoorr:: KKuurrtt

Description
Jill (of “Jack & Jill” fame) has recently graduated from
Stanford University with a degree in biochemistry. Being
top of her class, Jill has been snapped up by Chemtex, a
large medical research facility, to continue their research of
the human genome.

Genes are encoded by a string containing the four characters
“ACGT”, corresponding to the four molecules which
constitute DNA. When finding new sequences, it is Jill’s
task to determine which existing sequence it is most similar
to. Two sequences are most similar if they share the longest
possible subsequence of molecules (a.k.a. “ACGT”).

A subsequence of a gene is represented by sub-string of
characters that form part of the gene, but are not necessarily
successive characters, e.g. in the gene “ACTG”, the
subsequence “ATG” would be entirely viable. Similarly in
the gene “GATCGAT”, the subsequence “GTGT” would be
acceptable.

Task
Jill’s task is to determine how similar two genes are by
finding the longest possible subsequence common to both
genes.

Input (gene.in)
The input file, gene.in, will consist of four lines. The first
and third lines will consist of single integer values, M and N
respectively, which represents the lengths of the first and
second genes. The second and fourth lines consist of a string
of characters, which represent the respective genes.

Sample input:
gene.in

Output (gene.out)
The output file, gene.out, must consist of one line. The first
line of output will consist of one integer value, K, which
represents the length of the longest common subsequence.

Sample output:
gene.out

Constraints
1<=M<=65,536

1<=N<=65,536

Time Limit:
Maximum time allowed per test case is 5 seconds

Scoring:
10 points for each correct output.
0 points for each incorrect output.

4
ACGT
8
AGCTGCAT

4

Ä�ÅeÆoÇ�È>ÉrÈ?ÊUÅ�Ë�ÌQÍ(ÍxÎ
ÏQÐCÑ!Ò9Ó>ÔrÕ@Ö~×�Ø�ÙQÑ!Ò@ÚeÛCÜ�Ý�Ö4ÛQÚ;Þ9Ú;Þ2ß

à Û?Ù�á

â/ã1ä2ã4å6æ�ç9è;é
ê>ë?ë@ê
 ìCí2îFï�ð/ñ4òLó

LLaattiinn SSqquuaarreess

AAuutthhoorr:: HHiieennrriicchh

Description
A square arrangement of numbers

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

is a 5 x 5 Latin Square because each whole number from 1
to 5 appears once and only once in each row and column.

Task
Write a program that will compute the number of N xN
Latin Squares whose first row is:

1 2 3 4 5.......N

Your program should work for any N from 2 to 7 inclusive.

Input (latin.in)
One line containing the integer N.

Sample input:
latin.in

Output (latin.out)
A single integer giving the number of latin squares whose
first row is:

1 2 3 . . . N.

Sample output:
latin.out

Constraints
2 ≤ N ≤ 7

Time Limit:
Maximum time allowed per test case is 5 seconds

Scoring:
20 points for each correct output.
0 points for each incorrect output.

5

1344

×�ØeÜoô�Ó>ÔrÓ?ÛUØ�õ�ÏQö(öx÷
ÏQÐCÑ!Ò9Ó>ÔrÕ@Ö~×�Ø�ÙQÑ!Ò@ÚeÛCÜ�Ý�Ö4ÛQÚ;Þ9Ú;Þ2ß

à Û?Ù�á

â/ã1ä2ã4å6æ�ç9è;é
ê>ë?ë@ê
 ìCí2îFï�ð/ñ4òLó

IIOOIIWWaarrii bbooaarrdd ggaammee ((IIOOII 22000011))

SSuubbmmiitttteedd bbyy:: GGrraahhaamm

Description
The Mancala family of games with beads and pits is among
the oldest forms of human entertainment. This task
introduces a version of the game especially developed for
the IOI. Two players play the game on a round board with
seven pits around the edge. In addition, there is a bank for
each player. The game begins by randomly distributing 20
beads into the pits so that each pit contains at least 2 and at
most 4 beads. The two players move alternately. To move,
the player chooses a non-empty pit and takes all beads out of
the pit, and holds them in her hand. As long as there are
beads in the player’s hand, she considers the pits in
clockwise order, starting one after the emptied one, and
performs the following operations:
More than one bead in your hand: If the current pit already
contains 5 beads, then take one bead out of the current pit
and place it into your bank, otherwise place one bead from
your hand into the current pit.
• One bead in your hand: If the current pit contains at

least one and at most four beads then move all beads
from the pit and the one from your hand into your bank,
otherwise (the pit contains 0 or 5 beads) place the bead
in your hand into the opponent's bank.

• The game is over when, after a move, all pits are empty.
The winner is the player with most beads in her bank.
The starting player always has a winning strategy. You
are to write a program, which plays Ioiwari as the
starting player and wins. The evaluation opponent plays
optimally, that is, once given a chance, it will win and
your program will lose.

Task
 What must be done in clear unambiguous language.

Input and Output
Your program reads input from standard input and writes
output to standard output. Your program is player 1, and the
opponent is player 2. When your program is started, it must
first read a line with 7 integers p1,..p7: the initial number of
beads in pits 1,..7, respectively. The pits are labeled with
integers from 1 to 7 in clockwise direction on the board.
After this, the game starts with empty banks. Your program
should play as follows:
• If it is your program’s turn to move, then your program

should write the label of the pit describing the move to
standard output

• If it is your program’s opponent’s turn to move, then
your program should read the label of the pit defining
the move (the pit from which the beads are removed)
from standard input.

Tools
You are given a program (ioiwari2 on Linux,
ioiwari2.exe on Windows), which plays from one
initial game position optimally as Player 2.
It will first write to standard output the first line your
program is supposed to read, describing the initial values of
beads in that game: 4 3 2 4 2 3 2
After this, the program will play the game, trying to read
Player 1’s moves from standard input and writing its own
moves to standard output. You can run your program and
ioiwari2 in separate windows and transfer the conversation
manually to both programs. Ioiwari2 records the dialogue in
the file ioiwari.out.

Programming Instructions
In the examples below, you are reading the last integer of
the input into variable last and the variable mymove
contains your move.
If you program in C++ and use iostreams, you should use
the following implementation for reading standard input and
writing to standard output:

cout<<mymove<<endl<<flush;
cin>>last;

If you program in C or C++ and use scanf and printf, you
should use the following implementation for reading
standard input and writing to standard output:

printf("%d\n",mymove);
fflush (stdout);
scanf ("%d", &last);

If you program in Pascal, you should use the following
implementation of reading standard input and writing to
standard output:

Writeln(mymove);
Readln(last);

Example
Here is a correct sequence of 6 moves

Pit and bank contents after each move
Operation/Pit label 1. 2. 3. 4. 5. 6. 7. Bank1 Bank2
Initial situation 4 3 2 4 2 3 2 0 0
Player 1’s move: 2 4 0 3 5 0 3 2 3 0
Player 2’s move: 3 4 0 0 4 1 4 0 3 4
Player 1’s move: 5 4 0 0 4 0 0 0 8 4
Player 2’s move: 4 0 0 0 0 1 1 1 8 9
Player 1’s move: 5 0 0 0 0 0 0 1 10 9
Player 2’s move: 7 0 0 0 0 0 0 0 11 9

Scoring
If your program wins a test run, then you get 4 points for
that test, a tie in a test gives you 2 points for that test, and
otherwise you get 0 points for a test.

