
South African Computer Olympiad
Training Camp 2, 2006

Day 1

Overview

Author Marco Gallotta IOI 2002 Graham
Poulter

Problem booster xor align

Source booster.c
booster.cpp
booster.pas

N/A align.c
align.cpp
align.pas

Input file booster.in xor.in align.in

Output file booster.out xor.out align.out

Time limit 1 second N/A 2 seconds

Number of tests 10 10 10

Points per test 10 10 10

Total points 100 100 100

The maximum total score is 300 points.

Sat 20 May 2006



South African Computer Olympiad
Training Camp 2, 2006

Day 1

Rocket Booster

Author

Marco Gallotta

Introduction

Fred the manic storekeeper has upgraded his car with
rocket boosters. However, he bought cheap boosters, and
if he uses them for two consecutive sections of road they
will overheat and explode (a section being a piece of road
between two intersections).

Task

Fred wants you to determine the fastest time in which he
can complete a race. Time is measured in “booster time
units” — the time it takes to travel 1m with the boosters
on. The boosters double the speed of the car, so it takes
2 booster time units to cover 1m without the boosters
(assume that acceleration and deceleration are instanta-
neous). All roads can be travelled in either direction at
the same speed; Fred only turns the boosters on or off at
intersections.

Example

?>=<89:;0
5m ?>=<89:;1

6m ?>=<89:;2

There are three intersections (marked 0, 1, 2 above) with
roads from 0 to 1 (5m) and from 1 to 2 (6m). Fred needs
to get from intersection 0 to intersection 2.

Fred could turn on his boosters at the beginning and
get to the first intersection in 5 booster time units, but
then he must turn off the boosters and he will then get
to the end in a further 12 units. This would give a total
time of 17 booster time units. He can, however, improve
on this by only turning on the boosters after reaching the
first intersection. He would get to the first intersection in
10 units and then get to the final intersection in 6 units,
giving a total time of 16 booster time units.

Input (booster.in)

The first line will contain two values, N and R. There
will be N intersections, numbered from 0 (the start) to
N − 1 (the destination). The next R lines will contain 3
values, si, ei, di, representing the intersections at which

a section of road starts (si) and ends (ei) and its length
(di) in metres.

Sample input

3 2
0 1 5
1 2 6

Output (booster.out)

The output must contain a single value, the minimum time
required to get from intersection 0 to intersection N − 1
in booster time units.

Sample output

16

Constraints

• 1 ≤ N ≤ 2000

• 1 ≤ R ≤ 20000

• 1 ≤ di ≤ 20000

It is guaranteed that there will always be at least one
route to the final intersection.

50% constraints

• 1 ≤ N ≤ 200

• 1 ≤ R ≤ 1000

Time limit

1 second.

Scoring

An optimal answer will score 100%, while a sub-optimal
or invalid answer will score 0%.

Sat 20 May 2006



South African Computer Olympiad
Training Camp 2, 2006

Day 1

XOR

Author

IOI 2002

Introduction

You are implementing an application for a mobile phone,
which has a black-and-white screen. The x-coordinates of
the screen start from the left and the y-coordinates from
the top, as shown in the figures. For the application, you
need various images, which are not all of the same size.
Instead of storing the images, you want to create them us-
ing the phone’s graphics library. You may assume that at
the start of drawing an image, all pixels on the screen are
white. The only graphics operation in the phone’s library
is XOR(L,R,T,B), which will reverse the pixel values in
the rectangle with top-left coordinates (L,T) and bottom-
right coordinates (R,B), where L stands for the left, T for
the top, R for the right and B for the bottom coordinate.

Task

Given a set of black-and-white pictures, your task is to
generate each picture from an initially white screen using
as few XOR calls as you can. You are given the input files
describing the images, and you are to submit files includ-
ing the required XOR call parameters, not a program to
create these files.

Example

As an example, consider the images in Figure 1. Apply-
ing XOR(2,4,2,6) to an all white image gives Figure 1(a).
Applying XOR(3,6,4,7) to Figure 1(a) gives Figure 1(b),
and applying XOR(1,3,3,5) to Figure 1(b) finally gives
Figure 1(c).

Input (xor.in)

You are given 10 problem instances in the text files named
xor1.in to xor10.in. Each input file is organized as follows.
The first line of an input file contains one integer N , mean-
ing that there are N rows and N columns in the image.
The remaining lines represent the rows of the image from
top to bottom. Each line contains N integers: the pixel
values in the row from left to right. Each of these integers
is either a 0 or a 1, where 0 represents a white pixel and
1 represents a black pixel.

1

7
6
5
4
3
2
1

765432

(a)

7

4

63

(b)

1

5

3

3

(c)

Figure 1: Some examples

Sample input

7
0 0 0 0 0 0 0
0 1 1 1 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 1 0
1 0 1 0 1 1 0
0 1 0 0 1 1 0
0 0 1 1 1 1 0

Output (xor.out)

You are to submit 10 output files corresponding to the
given input files.

The first line of each output file must contain a single
integer K, the number of XOR calls required to generate
the image given in the input. The following K lines rep-
resent these calls from the first call to the last call to be
executed. Each of these K lines contains four integers:
the XOR call parameters L, R, T , B in that order.

Sat 20 May 2006



South African Computer Olympiad
Training Camp 2, 2006

Day 1

Sample output

3
2 4 2 6
1 3 3 5
3 6 4 7

Constraints

• 5 ≤ N ≤ 2000

Scoring

If

• the XOR calls specified in your output file do not
generate the required image, or

• the number of XOR calls specified in your output file
is not K, or

• in your output file, K > 40000, or

• your output file contains a XOR call with L > R or
T > B, or

• your output file contains a XOR call which does not
have positive coordinates, or

• your output file contains a XOR call with a coordi-
nate value exceeding N

then your score is 0%. Suppose that the smallest num-
ber of XOR calls used by any contestant is L. If K > 2×L
then you will score 0%. Otherwise, your score is:

100
2L−K

L
%

Sat 20 May 2006



South African Computer Olympiad
Training Camp 2, 2006

Day 1

Sequence Alignment

Author

Graham Poulter

Introduction

Alignment of pairs of DNA and protein sequences was
one of the first bioinformatics algorithms and is to this
day the most heavily used. One variant, the Basic Local
Alignment Search Tool (BLAST), has been called “the
Google of molecular biology” and the NIH BLAST page
is used tens of thousands of times each day.

Alignment of sequences is complex because there may
be gaps in either or both of the sequences. For exam-
ple, given the sequences AATGC and AGGC, the follow-
ing are three valid alignments, where _’s indicate gaps:
AATGC A_ATGC AATGC____
_AGGC AG__GC _____AGGC
However, it is illegal for a gap in one sequence to be

aligned with a gap in the other.
One wants the alignment that is “closest” in some sense,

in order to determine how closely related the sequences
are. Each alignment is given a score S, which is deter-
mined by two terms:

1. Wherever a letter from one sequence is aligned with a
letter from the other, a “match” score is taken from a
lookup table, depending on the letters involved (see
the example). The lookup table is symmetric i.e.,
the match score for (A, B) is the same as for (B, A).
These letter match scores are all added to S.

2. For each gap of length L (i.e., L underscores in a
row), the score S is reduced by a “gap penalty” G +
QL, where G is the “gap opening penalty” and Q is
the “gap extension penalty” (parameters given in the
input). The exception is gaps at the start or end of
the sequence, which are ignored.

Task

You are to write a program that takes two sequences, an
alphabet, a match lookup table, and the gap open and
gap extension penalties, and finds an alignment of the
sequences which maximises S.

Example

Again, consider the strings AATGC and AGGC, and let G = 2
and Q = 1. The match lookup table is shown below:

A C G T
A 5 0 0 0
C 0 5 0 0
G 0 0 5 −1
T 0 0 −1 5
Now consider the three alignments shown above. In the

first, the match score is 5 − 1 + 5 + 5 = 14 and the gap
is not penalised (because it is at the start), so S = 14. In
the second, the match score is 5+5+5 = 15 but there are
gap penalties of 2+1 ·1 = 3 and 2+1 ·2 = 4, so S = 8. In
the third alignment there are no matches and no proper
gaps, so S = 0.

Input (align.in)

The first line contains the string for sequence A, and the
second line contains the string for sequence B. The third
line contains the gap open penalty G, and the fourth line
contains the gap extension penalty Q. The fifth line con-
tains a string of N unique uppercase letters (in an ar-
bitrary order) which form the alphabet for genetic se-
quences. A and B will consist entirely of letters from
this alphabet.

Lines 6 to N + 5 each contain N numbers representing
the match-scores for each letter of the alphabet against
each other letter. The table will be symmetrical about its
diagonal from top left to bottom right. The ith letter in
the alphabet string corresponds to row and column i of
the table.

Sample input

AATGC
AGGC
2
1
ACGT
5 0 0 0
0 5 0 0
0 0 5 -1
0 0 -1 5

Output (align.out)

The output is two lines, consisting of an alignment of the
input sequences with the highest possible alignment score.
Use underscores (_) to represent gaps in a sequence.

Sample output

AATGC
_AGGC

Sat 20 May 2006



South African Computer Olympiad
Training Camp 2, 2006

Day 1

Constraints

The lengths of A and B be between 1 and 1000 letters.
The gap open and extension penalties G and Q will be
integers between 0 and 1000. The elements of M will be
integers between −1000 and +1000.

50% constraints

Half of the test cases will have G = 0.

Time limit

2 seconds.

Scoring

For each test case, 10 points are given for any align-
ment achieving the highest possible alignment score, and
0 points otherwise. Alignments which align a gap in A
with a gap in B (one underscore on top of another) will
score 0.

Sat 20 May 2006


