
South African Computer Olympiad
1st Training Camp 2012
Training Camp Day 2

Overview

Author(s) Max
Rabkin

Keegan
Carruthers-

Smith

Julian
Kenwood

Julian
Kenwood

Problem copyrite bus primcomp minitris

Source copyrite.c
copyrite.cpp

bus.c
bus.cpp

primcomp.c
primcomp.cpp

minitris.c
minitris.cpp

Input file copyrite.in stdin stdin stdin

Output file copyrite.out stdout stdout stdout

Time limit 1 second 1 second 1 second 1 second

Memory limit 64MiB 64MiB 64MiB 64MiB

Number of tests 10 10 10 10

Points per test 5 10 10 10

Detailed feedback No Yes No No

Total points 100 100 100 100

The maximum total score is 400 points.

Sun 04 Mar 2012

South African Computer Olympiad
1st Training Camp 2012
Training Camp Day 2

Detecting
Plagiarism

Max Rabkin

Introduction

You all know the legend of Bruce, the hero who had leg-
endary abilities in both computer science and mathemat-
ics — according to some, from as young as six months.
A recent discovery has cast doubt on the legend, how-
ever: it seems that some of Bruce’s discoveries were in fact
the work of a little known contemporary, Carl Hultquist.
Hultquist suspected this from early on, but was dismissed
as paranoid and delusional during his life.

In an attempt to prove Bruce’s guilt, the young
Hultquist placed secret “watermarks” in his programs
and writings (he changed the text of the watermark over
time). Unfortunately, the processing power needed to
search through Bruce’s enormous collection of work was
not available at the time.

With modern processors and clever algorithms, it may
be possible to return some dignity to Hultquist’s memory
by proving him correct.

Task

You will be given a text, and Carl’s watermark for the
period in which it was written. You need to determine
whether the text contains the watermark, and if it does,
at what position.

Carl’s watermarking system was case-insensitive and
treated all punctuation the same, so we have preprocessed
the input so that all the letters (in the text and water-
mark) are lowercase and all punctuation marks are re-
placed with an underscore ().

Example

Suppose the text was “MVEMJSUNP is probably not a
real word”. Carl’s watermark at the time was “NP is P”,
As you can see, the watermark starts at position 7 in the
text: mvemsunp is probably not a real word

Input (copyrite.in)

The first line of input file contains Carl’s watermark. The
next line contains the text to be searched. Both the wa-
termark and the text are made up of lowercase letters and
underscores.

Sample input

np_is_p
mvemjsunp_is_probably_not_a_real_word

Output (copyrite.out)

The output consists of a single line, containing a single
integer: -1 is the watermark does not appear in the text;
otherwise, its position (the first position is 1, not 0).

Sample output

7

Constraints

• 1 ≤ length of watermark ≤ 100

• 1 ≤ length of text ≤ 1 000

Time limit

1 second.

Scoring

Sun 04 Mar 2012

South African Computer Olympiad
1st Training Camp 2012
Training Camp Day 2

Bus Routes
Keegan Carruthers-Smith

Introduction

The government wants to create more bus routes in South
Africa. Every bus route has buses travelling in both direc-
tions on it. Unfortunately, it is not always possible to get
from a city to every other city using only buses. So the
government wants to create more bus routes, such that
it is possible to travel between any two cities just using
buses.

Task

Creating a bus route costs money, so your task is to work
out the minimum cost needed such that there is a path
between any two cities using only buses.

Example

In the example there already exists bus routes between
the cities 4 ↔ 2 and between cities 3 ↔ 5. If we build the
bus routes 2 ↔ 3 and 1 ↔ 3, we can reach any city using
the layout. This has a cost of 150, which is not minimal.
However if we build the bus routes 2 ↔ 1 (of cost 2) and
3 ↔ 1, we can reach any city. This has a cost of 52, which
is minimal.

Figure 1: This represents the sample input. Non-bold
solid lines represent bus routes that already exist. Bold
solid lines represent the bus routes picked to minimize the
cost of the task. Dashed lines represent other bus routes
which were not picked.

Input (stdin)

The first line of the input contains 3 space-separated in-
tegers, N,C and M . There are N cities, numbered 1 to
N . The next C lines each contain two space-separated
integers a and b. This represents an already existing bidi-
rectional bus route between a and b. The next M lines

each contain 3 space-separated a, b and c. This represents
a bus route you can build between a and b with cost c.
No two cities are directly connected by both a potential
bus route and an existing bus route. No two cities are
directly connected by more than one potential or existing
bus route.

Sample input

5 2 5
4 2
3 5
2 3 100
3 1 50
1 2 10
4 2 75
2 1 2

Output (stdout)

Sample output

52

Constraints

• 1 ≤ N ≤ 1 000

• 0 ≤ C,M ≤ 10 000

• 1 ≤ a, b ≤ N

• 1 ≤ c ≤ 1 000

• There is always a way to build bus routes such that
there is a path between any two cities.

Time limit

1 second.

Detailed feedback

Detailed feedback is enabled for this problem.

Scoring

100% per test case for a correct answer. 0% otherwise.

Sun 04 Mar 2012

South African Computer Olympiad
1st Training Camp 2012
Training Camp Day 2

Primitive
Compression

Julian Kenwood

Introduction

Carl has been working with large datasets for his job. The
datasets are so large, in fact, that he has had to develop a
new kind of compression. The hard drives that Carl uses
are very efficient at storing certain strings of data. Help
Carl get the most compression possible.

Task

The dataset is represented as a string of N lowercase char-
acters. You will also be given K patterns each of length
|Ki|. These patterns represent the strings that may be
efficiently stored on the hard drive. Each pattern has an
associated cost which is the amount of space required to
store it on the hard disk.

Your task is to find the minimum space required to
store Carl’s dataset. The hard drives that Carl uses are
experimental. Any stored data must be properly broken
down into the patterns given. Luckily, there is always at
least one way to break up each dataset into these patterns.

Example

Suppose Carl would like to store the string ‘aaabbc’ on a
hard drive and that there are six patterns that the hard
drive accepts. ‘a’, ‘b’ and ‘c’ are allowed with cost 10 each.
‘aa’ can be stored with cost 15, ‘ab’ can be stored with
cost 12 and finally ‘abbc’ can be stored with cost 35.

Carl can break up his dataset a number of different
ways. Using only the single letter patterns yields a cost
of 60. We can also use patterns ‘aa’ and ‘abbc’ for a cost
of 50. We can do even better by using ‘aa’, ‘ab’, ‘b’ and
then ‘c’ to give us a total of 45. This is the best we can
do.

Input (stdin)

The first line of the input contains two space-separated
integers, N and K. The second line contains a single
lowercase word: a string representing Carl’s dataset. The
following K lines each contain a lowercase string and an
integer. These are the patterns and their corresponding
cost to store them on the hard drive.

Sample input

6 6
aaabbc
a 10
b 10
c 10
aa 15
ab 10
abbc 35

Output (stdout)

Your output should consist of a single integer: the mini-
mum cost required to store the dataset on the hard drive.

Sample output

45

Constraints

• 1 ≤ N ≤ 10, 000

• 1 ≤ K ≤ 100, 000

• 1 ≤ |Ki| ≤ 10

Additionally, in 60% of the test cases:

• 1 ≤ K ≤ 25

Additionally, in 30% of the test cases:

• 1 ≤ N ≤ 10

• 1 ≤ K ≤ 5

Time limit

1 second.

Scoring

A correct solution will score 100% while an incorrect so-
lution will score 0%.

Sun 04 Mar 2012

South African Computer Olympiad
1st Training Camp 2012
Training Camp Day 2

Minimal Triangles
Julian Kenwood

Introduction

Bruce is doing research into various new technologies.
While looking at other programs he has found some inter-
esting open source software. This software relates to the
field of computer vision, the field that allows computers to
make sense of images. There is just one major problem:
the software is SLOW! Instead of solving the problem
himself, Bruce would like you to help.

Task

Bruce has tracked the source of the software’s slowness
down to a single routine. This code takes in a list of N
points in the 2D plane and finds the triangle with small-
est perimeter. The vertices of this triangle must be chosen
from the list of points that were given. Degenerate trian-
gles, triangles with zero area, are permitted. This part of
the code is used extensively so it is important that it is
made to run as fast possible.

Bruce would like you to write a program demonstrating
the algorithm that you will use to solve the problem. Your
program will be tested against data prepared by Bruce
to determine if your code is fast enough to replace the
existing code in the project.

Warning: The test data in this problem ranges from
easy to very hard. If you get stuck on this problem it is
advisable to skip it until you are satisfied with your other
solutions.

Example

Suppose you have a list of five points you want to run
through the routine. Theseare: (1, 2), (3, 5), (10, 2), (0,
3) and (10, 10). There are ten triangles that you could
make from the points.

We could make a triangle from (1, 2), (3, 5) and (10,
2). This gives us a triangle of perimeter 20.221 units.
However if we choose (1, 2), (3, 5) and (0, 3) we get a
much smaller answer of 8.625. This is clearly the smallest
triangle by perimeter and is the answer.

Input (stdin)

The first line of the input contains a single integer: N , the
number of points. The following N lines each contain two

space-separated integers, the x and y coordinates of each
point. All coordinates will fit into a signed 32-bit integer.

Sample input

5
1 2
3 5
10 2
0 3
10 10

Output (stdout)

The output consists of a single decimal number, the
perimeter of the smallest triangle rounded off to three
decimal places.

Sample output

8.625

Constraints

• 1 ≤ N ≤ 100, 000

Additionally, in 30% of the test cases:

• 1 ≤ N ≤ 100

Time limit

1 second.

Scoring

A correct solution will score 100% while an incorrect so-
lution will score 0%.

Sun 04 Mar 2012

