
South African Computer Olympiad
Training Camp 1, 2007

Day 2

Overview

Author Carl Hultquist Marco Gallotta Richard
Starfield

Problem gridhunt cheese pizza

Source gridhunt.java
gridhunt.c

gridhunt.cpp
gridhunt.pas

cheese.java
cheese.c

cheese.cpp
cheese.pas

pizza.java
pizza.c

pizza.cpp
pizza.pas

Input file stdin cheese.in pizza.in

Output file stdout cheese.out pizza.out

Time limit 1 second 2 seconds 1 second

Number of tests 20 10 10

Points per test 5 10 10

Total points 100 100 100

The maximum total score is 300 points.

http://olympiad.cs.uct.ac.za/contest.html

Sun 04 Mar 2007



South African Computer Olympiad
Training Camp 1, 2007

Day 2

Grid Hunt

Author

Carl Hultquist

Introduction

Task

The computer has a secret N ×M grid of numbers, which
increase strictly from left to right and from top to bottom.
You can query what the value of a number is at any loca-
tion in the grid. Given a target number to search for, find
its position in the grid using as few queries as possible.
You are guaranteed that the target number can be found.
If the number can be found at more than one location in
the grid, you only need to find one of the locations.

Example

Suppose the grid of numbers is as follows:

1 3 4
2 4 5
5 6 8

If we were looking for the number 5, for example, it’s
found in either row 3 column 1, or row 2 column 3.

Interaction

Interface with a reactive program via stdin and stdout
(cin and cout in C++; System.in and System.out in
Java). The first line read by your program from stdin will
contain 3 space-separated integers, N , M and T , which
are the number of rows, number of columns, and target
number respectively. To query a cell in the grid, your pro-
gram should write the string “Q r c” to stdout (without
the quotes), where r and c are the row and column coordi-
nates of the cell you wish to know the value of, then read a
line from stdin which will contain the number. When you
can identify which cell the target is in, write the string
“I r c” to stdout (without the quotes), giving the coor-
dinates of the cell.

For testing purposes, you may upload a data file. The
first line contains N , M and T . The remaining lines con-
tain the data in the grid.

Sample input

3 3 5
1 3 4
2 4 5
5 6 8

Sample interaction

Output Input
3 3 5

Q 1 1 1
Q 1 2 3
Q 1 3 4
Q 2 3 5
I 2 3

Flushing

After writing each line to stdout, you need to flush it so
that the evaluation will receive it. This can be done as
follows:

C fflush(stdout);

C++ cout.flush();

Java System.out.flush();

Constraints

• 1 ≤ N,M ≤ 5000

• 1 ≤ Vi,j < 231 for the value of any number Vi,j in the
grid

50% constraints

• 1 ≤ N,M ≤ 50

Time limit

1 second.

Scoring

If your program does not identify a cell containing the
target number for a test case, then you score 0% for that
test case.

Assuming you correctly identify a cell containing the
target number: if your program takes fewer than M +
N queries for a test case, then you score 100% for that
test-case. Otherwise, you score M+N

Q 75%, where Q is the
number of queries used by your program.

Sun 04 Mar 2007



South African Computer Olympiad
Training Camp 1, 2007

Day 2

The Cheese
Universe

Author

Marco Gallotta

Introduction

Wensleydale has to this day been baffled as to where all his
cheese as been disappearing to. The program you wrote
for him last year absolutely fascinated him. There was a
small problem though, as all the cheese he had purchased
disappeared before he could start selling it off. This hap-
pened every time he purchased a new batch.

Every night Wensleydale dreams about all his cheese.
He dreams of one day finding a universe full of cheese.
This cheese universe exists of almost nothing but cheese.
If only this dream could come true!

Task

Wensleydale needs your help yet again. He gets so excited
during his dream that he really does think that it may
come true. However silly he may sound, you agree to help
him out.

In his dream he often needs to get to a particular point
in the universe. Since there is so much cheese, he wants
to eat the minimum amount of cheese that is required to
reach the required point.

Now usually this would be very easy — just travel in a
straight line. However, most cheese have spherical holes
filled with air. Wensleydale can enter a hole and travel
through it without having to eat any cheese. This reduces
the amount of cheese he has to eat. The holes in the cheese
sometimes overlap one another, creating holes of various
shapes.

Your task is to write a program that will tell Wensley-
dale the minimum amount of cheese he needs to eat to get
from his starting position to the position he wants to end
up at. The universe is of infinite size, so you can never
leave the universe once you are inside.

Example

Suppose Wensleydale starts off at position (0, 0, 0) and
wants to get to the point (6, 0, 0) and that there is only
one hole with centre (3, 0, 0) and radius 2.

The best route would be to go directly to the hole, exit
the other side and then directly to the destination point.
This would require him to eat 1 unit length of cheese to
get into the hole and another 1 unit length to get from
the other side of the hole to the final point, giving a total
of 2.

Input (cheese.in)

The first line contains the three values, x0, y0, z0, repre-
senting the starting point. The second line contains the
three values, x1, y1, z1, representing the destination point.
The third line contains a single value, N , the number of
holes in the universe.

The next N lines each contain four values xi, yi, zi, ri.
These represent the centre (xi, yi, zi) and radius ri of the
holes.

Sample input

0 0 0
6 0 0
1
3 0 0 2

Output (cheese.out)

The output must contain a single value, the minimum
amount of cheese required to get from the starting point
to the destination point. This value must be rounded off
to two decimal places.

Sample output

2.00

Constraints

• 0 ≤ N ≤ 1000

• −231 < xi, yi, zi < 231

50% constraints

• 0 ≤ N ≤ 100

Time limit

2 seconds.

Sun 04 Mar 2007



South African Computer Olympiad
Training Camp 1, 2007

Day 2

Scoring

An optimal answer will score 100%, while a sub-optimal
or invalid answer will score 0%.

Sun 04 Mar 2007



South African Computer Olympiad
Training Camp 1, 2007

Day 2

Grand Pizza
Network

Author

Richard Starfield

Introduction

The Guji village is abuzz — a brand new set of pizza
ovens has been installed in their huts, allowing them to
provide their famous pizza feasts to twice the tourists at
half the price! Although the cooking is done via a wood
fire for that distinctive flavour, the fires can be started or
doused using convenient electronic switches provided with
the ovens.

There is a slight glitch, however. The wiring was done
by Manic Fred, who got a bit carried away, and now
switching an oven on or off in one hut automatically flips
the states of all ovens (from on to off or vice versa) in
neighbouring huts. Luckily these secondary changes don’t
affect any further ovens.

Task

The afternoon before a feast the Guji decide to enlist your
aid. Given the hut layout and the current states of the
ovens, the Guji would appreciate a list of the switches they
need to flip so that all the ovens’ fires are lit and ready.

Fred used the minimum amount of wiring to connect all
the huts together, so there is exactly one route between
any pair of huts.

Example

Suppose there are 3 huts in a line, numbered 1, 2 and
3, with the fires in 2 and 3 currently lit. The following
sequence of switch flips will ignite all fires:

• flipping 3 will douse the fires in 2 and 3, leaving all
fires off

• flipping 2 will light the fires in 1, 2, and 3.

Input (pizza.in)

The first line contains N, the number of huts. The huts
are numbered from 1 to N . The next N − 1 lines contain
two space-separated integers, h1 and h2, specifying that

those two huts are neighbours. The next N lines, one for
each hut, contain the digit 0 or 1 to indicate whether the
oven in that hut is initially on (1) or off (0).

Sample input

3
1 2
2 3
0
1
1

Output (pizza.out)

The output should consist of N lines, each containing a
0 or 1. A 1 on the ith line indicates that the switch be-
longing to the oven in the ith hut should be flipped. If
it is not possible to light all the ovens, the output should
consist of one line containing the integer −1. If there are
multiple solutions, you may output any of them.

Sample output

0
1
1

Constraints

• 1 ≤ N ≤ 10000

50% constraints

• 1 ≤ N ≤ 10

Time limit

1 second.

Scoring

A correct solution (one that correctly lights all the fires
or indicates if this is impossible) scores 100%. Anything
else scores 0%.

Sun 04 Mar 2007


