
��������� 	�
���������
� ������������������� �����!��" #$�%�&�'���'��(

)+*�,.-%/.0�,+*21 3�4.56/�7�8+9�:

DDAAYY 11
OOvveerrvviieeww

;=<%>@?BA2CED�?�F2? GIH�GIA�J.K2L.H�MI>�NOH�MQPEA.R�SBDTKVU�W�WYX.H�D!Z.GIK�[

Author Carl CEOI Bruce

Problem Budget Hanoi Domino

Program name budget hanoi domino

Source name

budget.pas

budget.java

budget.cpp

hanoi.pas

hanoi.java

hanoi.cpp

domino.pas

domino.java

domino.cpp

Input file budget.in hanoi.in domino.in

Output files(10) budget.out hanoi.out domino.out

Time limit 10 second 1 second 1 second

Num. of tests 10 10 10

Points per test 10 10 10

Total points 100 100 100

\�]�^�_�` a�b�c�d�e�f�g
h]�i�j�^�_�k�c�l�m�n i�j�d!f�o p$c%f&d'g�d'g�q

r fsn t

u+v�w.x%y.z�w+v2{ |�}.~6y����+���

BBuuddggeettiinngg
PPrrooggrraammmmeerrss

Author
Carl Hultquist

Introduction
Bruce has risen up the corporate ladder in the company
for which he works, and has been put in charge of a
bunch of programmers. There are a lot of jobs that
need to be done by the programmers, and it's Bruce's
job to assign jobs to the various programmers.

However, there is a small problem. Because the
programmers are skilled in different areas, they will
take different amounts of time to complete any given
job. They might also make mistakes: this will often
happen if a programmer is given a job that deals with a
technology that they aren't familiar with or that bores
them.

Before assigning each programmer their jobs, Bruce
sends out a list of the jobs to everyone and asks them to
tell him how much time they think it would take them
to do each job. As the manager, Bruce knows roughly
how many mistakes each programmer might make on a
particular job, and he makes a table of this information.
By putting the information from his programmers
together with the table he has made, Bruce creates a
table that shows:

• How long a programmer will take to do a job
• How many mistakes a programmer will make

in doing a job

Of course, the easiest way of solving this would be to
give jobs to the programmers that make the fewest
mistakes. But Bruce only has a certain amount of
money to pay his programmers, meaning that he can
only pay for a certain maximum number of hours of
total work.

Task
Given the maximum number of hours that the
programmers can work in total, you must find the
fewest number of mistakes that can be made by
assigning programmers to jobs.

Example
In this example Bruce has 3 programmers, 4 jobs to be
done, and he can pay for a total of 7 hours of work.
Here is the table that Bruce has put together:

Programmer 1 Programmer 2 Programmer 3
Job
1

1 hour, 4
mistakes

2 hours, 3
mistakes

3 hours, 0
mistakes

Job
2

3 hours, 2
mistakes

2 hours, 5
mistakes

1 hour, 7
mistakes

Job
3

2 hours, 7
mistakes

1 hour, 1
mistake

3 hours, 3
mistakes

Job
4

2 hours, 4
mistakes

2 hours, 2
mistakes

2 hours, 1
mistake

In this case, the best way of assigning the jobs to the
programmers would be to give jobs 1 and 2 to
programmer 1, job 3 to programmer 2 and job 4 to
programmer 3. This gives a total of 7 hours of work,
and the programmers make 8 mistakes in total.

Input (budget.in)
The first line of budget.in will contain three integers:
N, M and H. N is the number of programmers, M is
the number of jobs that need to be done, and H is the
total number of hours of work that can be paid for. The
next M lines of input will contain N pairs of integers.
The ith pair of integers on the jth line of input indicates
how well programmer i can do job j. The first integer
in the pair indicates how long the programmer will take
to do the job (in hours), and the second indicates how
many mistakes the programmer will make in doing that
job.

Sample Input:
3 4 7
1 4 2 3 3 0
3 2 2 5 1 7
2 7 1 1 3 3
2 4 2 2 2 1

Output (budget.out)
The first and only line of budget.out must contain a
single integer, T, which is the smallest total number of
mistakes that will be made by the programmers.

Sample output:
8

Constraints
• 2 • N • 100
• 2 • M • 1000
• M • H • 5000
• 1 • t • H, where t is the amount of time it

takes a programmer to perform a job
• 1 • T • 1000000
• No programmer makes more than 100000

mistakes in any job
• Time limit 6 seconds
• A solution is always possible.

\�]�^�_�` a�b�c�d�e�f�g
h]�i�j�^�_�k�c�l�m�n i�j�d!f�o p$c%f&d'g�d'g�q

r fsn t

u+v�w.x%y.z�w+v2{ |�}.~6y����+���

TToowweerrss ooff HHaannooii
Author
Central European Olympiad in Informatics 2003

Introduction
You may be familiar with the legend of the towers of
Hanoi. A group of monks were given three pegs, with
64 discs placed on one peg. They must move all the
discs to another peg by moving them one at a time.
However, the discs are all different sizes, and they may
only move a disc onto an empty peg or onto a larger
disc (initially the disc are stacked with the largest at the
bottom). When they have completed the task, the
universe will end.

Unfortunately, the monks lost track of their strategy
part way through, and for a while have been making
moves somewhat at random. They need your help to
get back on track.

Task
You will be given the current position of the N discs on
the three pegs (the problem considers the general case
of N discs, not just 64). Compute the minimum number
of moves required to move all the discs onto peg 3.
This number may be very large (after all, the monks
will spent the rest of time completing the movements),
so you need only calculate the last 6 digits (i.e. the
remainder after division by 1 000 000).

Example
There are 7 discs, numbered 1 to 7 in increasing order
of size. Peg 1 contains discs 1 and 2, peg 2 contains
disc 3 and peg 3 contains the remaining discs. Then the
best strategy is to move disc 3 to peg 3, disc 1 to peg 2,
disc 2 to peg 3 and finally disc 1 to peg 3.

Input (hanoi.in)
The first line of input contains N, the number of discs.
The second line contains three space-separated
integers, which are the number of discs on pegs 1, 2
and 3. The third line contains the numbers of the discs
on peg 1 as a list of space-separated integers, in
decreasing order of size. The fourth and fifth lines
similarly describe pegs 2 and 3. Note that a peg may
have no discs, in which case a blank line appears in the
input.

Sample Input:
7
2 1 4
2 1
3
7 6 5 4

Output (hanoi.out)
The output consists only of a single integer. This is the
remainder when the minimum number of moves
required is divided by 1 000 000.

Sample output:
4

Constraints
1 • N • 100 000

Time limit
1 second.

Scoring
You will score 100% for a correct answer, and 0% for
an incorrect answer.

\�]�^�_�` a�b�c�d�e�f�g
h]�i�j�^�_�k�c�l�m�n i�j�d!f�o p$c%f&d'g�d'g�q

r fsn t

u+v�w.x%y.z�w+v2{ |�}.~6y����+���

DDoommiinnoo
Author
Bruce Merry

Introduction
Dr. Evil has imprisoned you in his underground lair.
He has learnt from his previous mistakes with Austin
Powers, and this time will not place you in an easily
escapable situation and not even watch. He will place
you in a more difficult to escape situation, but will still
not watch. You can only escape the room you are in by
solving a puzzle involving dominoes.

Task
You are given a set of dominoes. Each domino
contains two square halves, with 0 to N – 1 dots
(inclusive). The set contains one of each possible
domino, for a total of N(N + 1) / 2 (this includes
dominoes with the same number of dots on each half).
On the floor of the room is a rectangle which is just big
enough to contain all the dominoes, divided into
squares such that each domino covers two squares.
Each square contains indentations, which must match
up to the dots on one half of a domino (assume that the
dots will match up as long as there are the right number
of them). If you match up all the dots on the dominoes
to the squares in the rectangle, then the door will open
and you can escape.

Given N and the patterns of indentations, figure out
how to place all the dominoes so that you can escape. It
is guaranteed that it is possible to escape.

Example
Suppose N is 3. Then the dominoes are (0,0), (0,1),
(0,2), (1,1), (1,2) and (2,2). Suppose the indentations
on the floor are as follows:

1 1 0 1
0 1 2 0
0 2 2 2

Then the dominoes can be placed like this:

1 1 0 1
2 00

0
1
2 2 2

Input (domino.in)
The first line contains a single integer N. The second
line contains two space-separated integers, R and C.
The rectangle is R by C squares, and RC = N(N + 1).
The remaining R lines each describe one row of the
rectangle, from top to bottom. Each line contains C
space-separated integers, each representing the number
of indentations within a square, from left to right.

Sample Input:
3
3 4
1 1 0 1
0 1 2 0
0 2 2 2

Output (domino.out)
The output contains R lines of C space-separated
integers, corresponding to the description of the
rectangle in the input file. The dominoes must be
numbered from 1 to N(N + 1) / 2 (in any order), and the
squares in the output file must be labelled with the
number of the domino covering them. Thus each
domino is represented by a pair of adjacent and equal
numbers in the output file.

Sample output:
1 1 2 2
3 4 6 6
3 4 5 5

Constraints
1 • N • 13

Time limit
1 second.

Scoring
•You will score 0% for an incorrect answer and

100% for a correct answer.

