
��������� ��	�
�������
� ������������
 � ������������ !"
#�$�������%

& �(')

,+�-/.�0/12-3+� 46587/9�:�;=<�1

OOvveerrvviieeww

Author Carl Bruce IOI 1998

Problem Blow Torching
walls

Gold Polygon

Program name walls.exe gold.exe polygon.exe

Source name

walls.pas

walls.java

walls.cpp

gold.pas

gold.java

gold.cpp

polygon.pas

polygon.java

polygon.cpp

Input file stdin stdin stdin

Output files stdout stdout stdout

Time limit 5 seconds 5 seconds 1 second

Num. of tests 10 10 5

Points per test 10 10 20

Total points 100 100 100

>@?BADCFE2GIHJCLK2C M3N6M3E�O8P2Q8N6R3A�S,N6RUTIE8VXWYHZP([#\\�]8N�H�^8M3P6_

`Ba8b�c/d3egf,hji�kmlBb�c,nZo8prq�hsoBnut/nutwv
x o=l�y

z3{6|s}2~s�3|s{/z �8�w���L�6�s���

Blow-torching Walls
Description:
After Farmer John's cows tried to escape the farm recently,
Farmer John decided that he has had enough: these cows
must be sent to the abbatoir! The cows, who have been
spying on Farmer John, have discovered this... and are very
worried. They _really_ need to escape now, otherwise they'll
end up as roast beef on Farmer John's dinner table!
There is only one chance of escaping: and that is through the
underground maze that runs beneath the farm. The cows
raided Farmer John's office during the night and found a
map of the maze. The only problem is that Farmer John has
blocked up many parts of the maze with concrete wall... But
luckily for the cows, they have also raided his toolshed and
have stolen a blow-torch!
But blow-torching an entire piece of wall takes a _long_
time: so the cows need to work out the smallest number of
walls that they'll have to blow-torch away in order to escape
the maze, and also find the shortest route that needs this
number of walls blow-torched away.

Input:
Your program should read its input from stdin. The first line
of input will contain two integers, W and H, which indicate
the width and height of the maze respectively. The second
line of input will contain two integers, SX and SY,
indicating the X and Y co-ordinates respectively of where
the cows enter the maze. The third line of input will contain
two integers, EX and EY, indicating the X and Y co-
ordinates respectively of where the cows must exit the maze.
The next H lines will each contain W integers, separated by
spaces, that describe the maze. Each of these integers will
either be 0 or 1: 0 indicates that there is no wall at that point
in the maze, 1 indicates that there _is_ a wall.
The upper-left co-ordinate of the maze is (1,1) and the
lower-right co-ordinate is (W,H). This is illustrated below:

(1,1)..........
...............
..........(W,H)

Task:
The cows can move from any co-ordinate in the maze to any
directly adjacent co-ordinate (up, down, left or right). This
counts as a distance of 1. If the cows move to a co-ordinate
that has a wall, they blow-torch it first and then move to it.
1) Determine the smallest number of walls that need to be
blow-torched for the cows to travel from (SX,SY) to
(EX,EY).
2) Determine the shortest route from (SX,SY) to (EX,EY)
that requires Z walls to be blow-torched, where Z is the
number determined in part 1. There may be more than one
such route: you only need to determine one of them.

Output:
Your program should write its output to stdout. The first
line of output must contain 2 integers, Z and L. Z is the
smallest number of walls that need to be blow-torched
(determined in part 1 above), and L is the length of the
shortest path that requires Z walls to be blow-torched.
The next L+1 lines should each contain two integers, X
and Y, which indicate the co-ordinates of the route that
the cows must take �
Example:
INPUT
5 5
1 1
5 5
0 1 0 0 0
0 0 0 1 1
0 1 0 1 0
0 1 1 1 0
0 1 1 0 0

OUTPUT
1 8
1 1
1 2
2 2
3 2
3 3
4 3
5 3
5 4
5 5
So in this example, the cows must blow-torch 1 wall,
and the shortest route that needs only 1 wall blow-
torched has length 8.

Constraints:
1 <= W, H <= 1000
Co-ordinate (SX,SY) will never have a wall on it.
Time limit: 5 seconds

Scoring:
Let Z be the number of walls that your solution
required to be blow-torched, and let Q be the optimal
number. Let L be the length of th route that your
solution found, and let M be the optimal number for a
route requiring Q walls to be blow-torched. Put K =
max(M, L). Your score is then given by:
S = (10 - [(Z - Q) * 3]) * [(M / K)^(Z - Q + 1)]
Thus if you find the optimal number of walls, and the
optimal route for that number of walls, your solution
scores 10 points :-)

�B�8���/�3�g�,�j���m�B���,�Z�8�r���s�B�u�/�u�w�
� �=���

�3�6�s 2¡s¢3�s�/� £8¤w¥�¦L§6¨s©�¢

Gold

You have won the lottery! However this lottery has an
unusual twist: if you win, the six winning numbers are used
to specify the dimensions of a solid rectangular volume of
gold, which is your prize.

Task
The six numbers are grouped into three pairs; each of width
describes one side of the box. The absolute difference of the
two numbers is the length of that side. So for example if the
numbers 1, 5, 6, 4, 8 and 2 are paired as (1, 6), (8, 2), (4, 5)
then the box will have dimensions (6-1) x (8-2) x (5-4) = 5 x
6 x 1, giving it a volume of 30. However if they are paired
as (1, 5), (6, 8), (4, 2) then the total volume will be
4 x 2 x 2 for an area of only 16.

Since the pairing of the numbers makes a difference to the
final volume, you wish to choose the pairing that gives the
largest possible volume. You must write a program that will
compute the largest possible volume. To make it completely
general, it should work in any number of dimensions, not
just the usual three. So for example if the lottery has 10
numbers, then they will be put into 5 pairs and the absolute
values of the differences in each pair are multiplied together.

Input data
The first line of input data is the number of lottery numbers,
N. N will always be even. The next N lines contain the N
lottery numbers as integers.

Sample input:
8
1
5
6
3
20
9
5
11

Output data:

The output is a single integer representing the maximum
possible volume. Note that this value might not fit into a 32-
bit integer.

Sample output:

2700

Constraints

2 <= N <= 200
0 <= each lottery number <= 1000

Time limit

5 seconds.

�B�8���/�3�g�,�j���m�B���,�Z�8�r���s�B�u�/�u�w�
� �=���

�3�6�s 2¡s¢3�s�/� £8¤w¥�¦L§6¨s©�¢

Polygon

Polygon is a game for one player that starts on a polygon
with N vertices, like the one in Figure 1, where N=4. Each
vertex is labeled with an integer and each edge is labeled
with either the symbol ª (addition) or the symbol «
(product). The edges are numbered from 1 to N.

Figure 1. Graphical representation of a polygon

On the first move, one of the edges is removed.
Subsequent moves involve the following steps:
pick an edge E and the two vertices V1 and V2 that are linked
by E; and
replace them by a new vertex, labeled with the result of
performing the operation indicated in E on the labels of V1

and V2.
The game ends when there are no more edges, and its score
is the label of the single vertex remaining.

Sample Game
Consider the polygon of Figure 1. The player started by
removing edge 3. The effects are depicted in Figure 2.

Figure 2. Removing edge 3
After that, the player picked edge 1,

Figure 3. Picking edge 1
then edge 4,

Figure 4. Picking edge 4
and, finally, edge 2. The score is 0.

Figure 5. Picking edge 2

Task
Write a program that, given a polygon, computes the highest
possible score and lists all the edges that, if removed on the
first move, can lead to a game with that score.

Input Data
Input must be read from standard input, i.e. as you would
read from keyboard. The input consists of two lines. On the
first line is N, the number of vertices. The second line
contains the labels of edges 1..N, interleaved with the
vertices' labels (first that of the vertex between edges 1 and
2, then that of the vertex between edges 2 and 3, and so on,
until that of the vertex between edges N and 1), all separated
by one space. An edge label is either the letter ¬
(representing ª) or the letter (representing «).
Sample Input
4
t -7 t 4 x 2 x 5
This is the input for Figure 1. The second line starts with the
label of edge 1.

Output Data
Output must be written to standard out, i.e. as you would
write to screen. On the first line of output your program
must write the highest score one can get for the input
polygon. On the second line it must write the list of all edges
that, if removed on the first move, can lead to a game with
that score. Edges must be written in increasing order,
separated by one space.

Sample Output
33
1 2
This is the output for Figure 1.

Constraints
• 3 <= N <= 50

• For any sequence of moves, vertex labels are in the
range [-32768,32767].

Time limit

1 second.

