
��������� 	�
���������
� ������������������� �!���"��# $%�&�'�(���(��)

* 	,+ -

.0/�132�435&16/�. 7�8393:�;�<>=�5

OOvveerrvviieeww

Author IOI 1994 Bruce IOI 1995

Problem Castle Change Wires & switches

Program name castle.exe change.exe wires.exe

Source name

castle.pas

castle.java

castle.cpp

change.pas

change.java

change.cpp

wires.pas

wires.java

wires.cpp

Input file stdin stdin wires.in

Output files stdout stdout stdout

Time limit 1 second 1 second 1 second

Num. of tests 5 5 10

Points per test 20 20 10

Total points 100 100 100

?A@CBEDGF&HJI�D�K&D L6M�L6F�NPO&QPM�R6B�S0M�RUTJFPV�WGIXOZY�[�[]\PM�I"^PL6O�_

* See text of Question.

`�a�b�c�d e�f�g�h�i�j�k
l a�m�n�b�c�o�g�p�q�r m!n�h"j�s t%g&j'h(k�h(k�u

v e,w x

y0z�{3|�}3~&{6z�y ���3�3�����>��~

The Castle
 1 2 3 4 5 6 7
 #############################
 1 # | # | # | | #
 #####---#####---#---#####---#
 2 # # | # # # # #
 #---#####---#####---#####---#
 3 # | | # # # # #
 #---#########---#####---#---#
 4 # -># | | | | # #
 #############################

 (Figure 1)

 # = Wall
 | = No wall
 _ = No wall
 � = It points to the wall to remove

 according to the example output.

Figure 1 shows the map of a castle. Write
a program that calculates

1. how many rooms the castle has

2. how big the largest room is

3. which wall to remove from the castle
to make as large a room as possible.

The castle is divided into m * n (m<=50,
n<=50) square modules. Each such
module can have between zero and four
walls.

Input Data
Your program is to read from standard
input. The castle is represented in the form
of numbers, one for each module.

• The first two lines contain the number
of modules in the north-south
direction and the number of modules
in the east-west direction.

• In the following lines each module is
described by a number (0<=p<=15).
This number is the sum of: 1 (= wall
to the west), 2 (= wall to the north), 4
(= wall to the east), 8 (= wall to the
south). Inner walls are defined twice;
a wall to the south in module 1,1 is
also indicated as a wall to the north in
module 2,1.

• The castle always has at least two
rooms.

Thus the representation for our example is:
 4
 7
 11 6 11 6 3 10 6
 7 9 6 13 5 15 5
 1 10 12 7 13 7 5
 13 11 10 8 10 12 13

Output Data
Write the following on three lines to standard
output: First the number of rooms, then the
area of the largest room (counted in modules)
and a suggestion of which wall to remove (first
the row and then the column of the module
next to the wall and finally the compass
direction that points to the wall). In our
example ("4 1 E" is one of several possibilities,
you need only produce one):
 5
 9
 4 1 E

Constraints

• 2 <= m,n <= 50

• Time limit: 1 second

• Memory limit: 16384 Kb

Scoring
You receive 4 points for the number of rooms,
6 points for the area of the largest room, and
10 points for the wall to remove, for a
maximum of 20 points per test-case over 5 test
cases. Any form of invalid output data results
in zero for that case.

��������� �������������
� ������������������� �!���"��� �%�&�'�(���(���

� �,� �

 0¡�¢3£�¤3¥&¢6¡� ¦�§3¨3©�ª�«>¬�¥

Making Change
The cows have decided that they are tired of
the strange American system of coins, being
particularly annoyed by the large gap between
the quarter ($0.25) and the $1 coins that force
one to carry lots of quarters. They are going to
create their own system of coins with sensible
values.

However one feature of the American system
that they like is that one can always make up a
value with a "greedy" algorithm and get the
minimal number of coins. The greedy
algorithm says that one should always pick the
largest value coin that is not greater than the
amount still needed. So for example to make
83c in the US system (which has coins of
values 1c, 2c, 5c, 10c, 25c and $1), one first
picks three 25c coins to make 75c, then a 5c to
make 80c, then a 2c and finally a 1c.
This results in six coins, and there is no way to
make 83c with fewer coins. However if the
coins had been 1c, 4c and 6c, then making 8c
using a greedy algorithm takes 3 coins (6+1+1)
even though it is possible to make 8c using 2
coins (4+4).

Task
You must write a program to determine
whether the cow's proposed set of coins
satisfies the greedy property, and if not
compute the smallest value for which the
greedy algorithm is not optimal.

Input data (stdin)
The first line is N, the number of coins. Each
of the next N lines contains the value of a coin,
in cents. Values may be repeated (e.g. for
special editions). It is guaranteed that at least
one coin will have the value of 1c.

Sample input:
3
1
6
4

Output data (stdout)
If the coin set does not have the greedy
property, output the smallest value for which
the greedy algorithm is non-optimal, followed
by the minimum number of coins required to
create this value (space separated).

If the coin set has the greedy property, output
"-1 -1".

Sample output:
8 2

Constraints
1 <= N <= 100
1 <= each coin <= 10000

Scoring
An incorrectly formatted output file scores 0.
If the coin set has the greedy property, a
correct answer scores 100% and an incorrect
answer scores 0.
If the coin set does not have the greedy
property, then 50% is awarded for getting the
first output correct. If (and only if) this output
is correct, 50% is awarded for getting the
second field correct.

Time limit
1 second

�®�¯�°�± ²�³�´�µ�¶�·�¸
¹ ®�º�»�¯�°�¼�´�½�¾�¿ º!»�µ"·�À Á%´&·'µ(¸�µ(¸�Â

Ã ²,Ä Å

 0¡�¢3£�¤3¥&¢6¡� ¦�§3¨3©�ª�«>¬�¥

 Wires and Switches

Figure 1:
Cable with three wires and three switches

In Figure 1, a cable with three wires connects
side A to side B. On side A, the three wires are
labeled 1, 2, and 3. On side B, wires 1 and 3
are connected to switch 3, and wire 2 is
connected to switch 1.
In general, the cable contains m wires
(1<=m<=90), labeled 1 through m on side A,
and there are m switches on side B, labeled 1
through m. Each wire is connected to exactly
one of the switches. Each switch can be
connected to zero or more wires.

Measurements
Your program has to determine how the wires
are connected to the switches by doing some
measurements. Each switch can be made either
conducting or non-conducting. Initially all
switches are non-conducting. A wire can be
tested on side A with probe P: Lamp L will
light up if and only if the sensed wire is
connected to a conducting switch.
Your program begins by reading one line with
the number m from standard input. It then can
give three kinds of commands by writing a line
to standard output. Each command starts with
a single uppercase letter: Æ (Test a wire), Ç
(Change a switch), and È (Done). Command Æ
is followed by a wire label, Ç by a switch
label, and È by a list whose i-th element is the
label of the switch to which wire i is
connected.
After commands Æ and Ç , your program should
read one line from standard input. Command T
returns Y (Yes) when the wire's switch is
conducting (the lamp lights up), otherwise it
returns N (No). Command C returns Y if the
new switch state is conducting, and N
otherwise. The effect of command C is to
change the state of the switch (if it was
conducting then it will be non-conducting
afterwards and vice versa); the result is
returned just for feedback.
Your program may give commands T and C
mixed in any order. Finally, it gives
command D and terminates. Your program

should give no more than nine hundred (900)
commands in total.

Example
Figure 2 presents an example conversation
involving 8 commands relating to Figure 1.

Std Output Std Input
3

C3 Y
T1 Y
T2 N
T3 Y
C3 N
C2 Y
T2 N
D3 1 3

Figure 2: Example conversation

The file ÉËÊ ÌÎÍÐÏÐÑ Ê Ò is fed to the opponent to
initialise the state. So that you may test your
program against the opponent with custom
data, the format of the file is: first line is the
number of wires (same as the number of
switches), the next line is the switch the first
wire is connected to, and so on. This is theÉËÊ ÌÓÍÐÏÐÑ Ê Ò for the example:
 3
 3
 1
 3

Constraints
• 1 <= m <= 90
• Time limit: 1 second.
• Memory limit: 16384 Kb

Scoring
There are 10 test cases. Each test case is worth
10 points, awarded if the correct 'done'
command is issued in under 900 commands.
Note that the evaluation program will exit
immediately after the line for the 'done'
command is output, after the 900th command
has been issued, or after invalid output. No
points are awarded if the program produces
any invalid output (non-numeric data where a
number should be, invalid commands, out-of
range wire indices, and so forth), the answer is
wrong, or the command limit is reached.

